cERL照射ビームラインのコミッショニング

Commissioning of irradiation beam line in cERL

著者

島田 美帆, 帯名 崇, 宮島 司, 本田 洋介, 山本 将博, 中村 典雄, 下ケ橋 秀典, 森川 祐, 松村 宏, 豊田 晃弘, 吉田 剛, 保住 弥紹, 原田 健太郎 高エネルギー加速器研究機構

KEK, cERL/こおける照射実験計画の開始

エネルギー回収Linac (ERL)の原理実証機であるcERL 原射ビームライン

KEK, cERL/こおける照射実験計画の開始

2018年10月から照射ビームラインの建設が開始され,3月に完成.

KEK, cERL/こおける照射実験計画の開始

1.99Moの製造

2. 電子線照射による アスファルトの高寿命化

2. 電子線照射によるアスファルトの高寿命化

・アメリカでは、370万マイル~596万kmの舗装道路を維持していて、その補修に毎年500億ドル~54兆円もかかっている.

・ある試算^[1-2]によれば, 10 MeVの電子ビームで表面から2, 3 cmのアスファルトに照 射でき, 200 kGy (= J/g)程度の照射でアスファルトの強化 (架橋)が可能になる.

U.S. DOE, Office of Science, Workshop on Energy and Environmental Applications of Accelerators, June 24–26, 2015
T.K.Kroc and R.D.Kephart, "Industrial Accelerators -Beyond Transformers and Cyclotrons, More Power", FERMILAB-CONF-15-131-AD, 2015

照射ビームラインの要求仕様

照射ビームラインのスケジュール

イントロダクション
照射ビームラインの概要
2019年4月期コミッショニング
2019年6月期の照射実験
まとめ
今後の予定

2. 照射ビームラインの概要

•これまでのcERL

2. 照射ビームラインの概要

・照射ビームラインの追加

2. 照射ビームラインの概要

2. 照射ビームラインの概要

・照射ビームラインのoptics

照射実験はCW平均電流で最大で10 µA (1.3 GHz×0.0077 pC)と 小さく,空間電荷効果は無視できる.

2. 照射ビームラインの概要

・照射ビームラインのoptics

照射ターゲットの熱的及び真空的保護の観点から, $\sigma_{x,v} \sim 3 \text{ mm}$ を目安に設計.

イントロダクション
照射ビームラインの概要
2019年4月期コミッショニング
2019年6月期の照射実験
まとめ
今後の予定

3. 2019年4月期コミッショニング

3. 2019年4月期コミッショニング

・ダンプまでの輸送確認

3. 2019年4月期コミッショニング

3. 2019年4月期コミッショニング

3. 2019年4月期コミッショニング

輸送効率100%を確認.

3. 2019年4月期コミッショニング

・コリメータの調整

1. 照射された試料を取り出すため,残留放射線量を抑制する.2. 運転中の加速器室内外の放射線量を抑制する.

3. 2019年4月期コミッショニング

・コリメータの調整

3. 2019年4月期コミッショニング

・コリメータの調整

3. 2019年4月期コミッショニング

3. 2019年4月期コミッショニング

・CW照射後の残留線量測定

問題になるレベルではない.

3. 2019年4月期コミッショニング

・CW照射後の残留線量測定

問題になるレベルではない.

3. 2019年4月期コミッショニング

・施設検査の実施、合格

4月12日に施設検査実施,17日付けで合格.この結果,cERLは新たな使用目的として"電子ビームを使用した放射性同位元素の製造と理化学的研究"が追加された.

99Mo 7777					
	エネルギー回収 リニアック開発研究 及び応用研究	電子ビームを使用した 放射性同位元素の製造	理化学的研究		
最大エネルギー	26 MeV	21 MeV	10 MeV		
最大電流	1 mA	10 µA	10 µA		

今回追加されたCERLの使用目的.

3. 2019年4月期コミッショニング

・空カプセルへの照射試験

p~10 MeV/c, 18 MeV/cの2つの運動量で, 最大9 μA, 最長30分の照射を合計10回実施し,ターゲット・システムの健全性を確認.

イントロダクション
照射ビームラインの概要
2019年4月期コミッショニング
2019年6月期の照射実験
まとめ
今後の予定

6月期はカプセルにMo試料やアスファルトを封入し,照射実験を行った.

- ・スクリーン付きカプセルを使用したbeamの調整 ・エネルギーの掃引
- ・エネルギー(運動量)の安定度と測定誤差
- Moによるbeam profileの評価
- Mo照射実験の結果(一例)

4. 2019年6月期の照射実験

・スクリーン付きカプセルを使用したbeamの調整

beam軸とターゲット中心がずれていることを懸念し、スクリーン付きカプセルを用意、試料表面でのbeam位置を調べた.

4. 2019年6月期の照射実験

•スクリーン付きカプセルを使用したbeamの調整

4. 2019年6月期の照射実験 ・エネルギーの掃引 ⁹⁹Mo生成効率のエネルギー依存性を調査するため、 11.5 MeV/cから19.5 MeV/cを2 MeV/c刻みで照射. Dirr Gun Injector pinj ML2 ML1P cir

- •17.5 MeV/cの設定を基準に, ML2を下げる.
- •19.5 MeV/cについては入射空洞も上げて, *p*_{ini}とML2を上げる.

・エネルギー (運動量)の安定度と測定誤差

4. 2019年6月期の照射実験

・エネルギー (運動量)の安定度と測定誤差

運動量の誤差は<u>1.6%+0.01 MeV/c+0.062%</u>

主	に電	〔磁イ	Ξの	磁	場
に	起因	する	系統	泯	差

- Molこよるbeam profileの評価
 - φ35 mm, 1 mm厚と9 mm厚のdisk型試料を7セット試料カプセルに入れ, 照射

• Molこよるbeam profileの評価

1 mm厚試料におけるMoの放射化分布をImaging Plateで測定.

p = 19.50 MeV/cの時のMo試料

4.2019年6月期の照射実験

・Molこよるbeam profileの評価

イントロダクション
照射ビームラインの概要
2019年4月期コミッショニング
2019年6月期の照射実験
まとめ
今後の予定

5. まとめ

・2018年からcERLを利用した照射実験計画が開始. ・99Moの生成やアスファルトなどを照射できるビームラインが建設された.

5. まとめ

・2018年からcERLを利用した照射実験計画が開始. ・99Moの生成やアスファルトなどを照射できるビームラインが建設された.

イントロダクション
照射ビームラインの概要
2019年4月期コミッショニング
2019年6月期の照射実験
まとめ
今後の予定

謝辞

本照射実験は株式会社アクセルレーターとの受託研究 委託により行われております[1]. またRI製造に関しては 株式会社千代田テクノル^[2],アスファルト照射実験に関し ては東亜道路工業株式会社との共同研究になります[3]. 照射実験におけるRI生成・解析・貯蔵に際しましてKEK 放射線科学センターに、 また、 試料と治具、 及びビーム ダンプの製作・加工に関してKEK機械工学センターに感 謝の意を表したく存じます. 最後に、 cERLの運転に際し まして、cERL collaborationに御礼申し上げます.

^[1] 株式会社アクセルレーター, https://www.accelerator-inc.com, 2019

^[2] 株式会社千代田テクノル, http://www.c-technol.co.jp, 2019

^[3] 東亜道路工業株式会社, https://www.toadoro.co.jp, 2019

ご清聴ありがとうございました.