Cs-K-Te ヘテロ接合によるGaAsカ ソードの高耐久化

栗木雅夫^A, 正木一成^A, 郭磊^B A)広島大学先端物質科学研究科 B)名大シンクロ

ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts

Introduction, NEA Activation with Cs-K-Te Summary.

Introduction

Cs-O NEA-GaAs Photo-cathode

- Electron excited by circularly polarized laser is spin polarized.
- The polarized electron can be extracted to vacuum by NEA surface.

Degradation of Cs-O NEA surface

Thermal desorption Gas adsorption

Ion Feedback

Robust NEA GaAs cathode

- Cs-O NEA GaAs has a limited robustness.
 - Requires UHV (<1.0e-9 Pa).
 - Only compatible with DC biased electron gun, ~5 MV/m.
 - Limited bunch intensity, long bunch, large emittance.
- If a robust NEA surface on GaAs is developed,
 - Less requirement on vacuum.
 - Compatible with RF electron gun, ~ 100 MV/m.
 - High bunch intensity, short bunch, small emittance.

NEA Activation with Cs-K-Te

NEA surface with Hetero Junction

- $E_{GaAs} > \varphi$ for NEA state.
- $E_{film} > E_{GaAs}$ for transparency.

Apparatus

Κ

Cs2 Cs1

Chamber

Evaporation head

- Chemically polished SUS chamber with NEA and Ion pumps. Typical vacuum pressure is1.5e-8 Pa.
- Cs, K, and Te evaporation.
- Heater for cleaning.
- Quartz thickness monitor.
- Quantum efficiency measurement with Xe lump.

Calibration of Te thickness

Several samples of Te evaporated on GaAs substrate.

Calibrated with Ellipsometry measurement.

Use the thickness with the ellipsometry for further analysis.

Experiment

- Evaporate Te until the decided thickness.
- Evaporate K and Cs repeatedly.
- Measure the QE spectrum after each K and Cs evaporation.
- The optimum thickness of Cs and K is defined as that giving the maximum QE at 4.9 eV.

Thickness VS. QE

- QE at 4.96 eV is saturat ed with more Cs-K and T e.
- QE at 1.43 eV is peaked at some Te and Cs-K thic kness.
- These results are consis tent that electron emiss ions with 4.96 and 1.43 eV photon are from CsKT e and GaAs, respectively.

Lifetime of CsKTe NEA GaAs

Summary

- We found that GaAs is activated with CsKTe.
- QE was 2.0~3.0e-4 with 15-20 Å Te thickness.
- Thicker Te gave less QE.
- We found that the CsKTe GaAs has a longer lifetime (darklife) than that of Cs-O GaAs cathode.
- It is operable in RF gun, even a frequent cathode activation is needed.

NEA Activation with CsKTe

Fig : Quantum effiency of Cs-K-Te, Cs₂Te, K-Te : Appl. Phys. Lett. **70**, 1491 (1997) D. Bisero and B. M. van Oerle et al., "High efficiency photoemission from Cs–K–Te")

- Thin film photo-cathode by evaporation.
- High quantum efficiency at 4.75 ~ 3.0 eV.
- Work function and band gap?

Ellipsometry

Reflectivity and phase difference for S and P polarization is measured.

 $\rho = \tan(\psi)e^{i\Delta}$

$$\psi = \frac{r_p}{r_s} \quad \Delta = \varphi_p - \varphi_s$$

$$\rho = \frac{\frac{r_{p01} + r_{p12}e^{-i2\beta}}{1 + r_{p01}r_{p12}e^{-i2\beta}}}{\frac{r_{s01} + r_{s12}e^{-i2\beta}}{1 + r_{s01}r_{s12}e^{-i2\beta}}}$$

r : reflectivity d : thickness

$$\beta = 2\pi \frac{d}{\lambda} n_1 cos \theta_1$$