PASJ2018 WEP094

若狭湾エネルギー研究センターシンクロトロンにおけるビーム出射制御系の開発 DEVELOPMENT OF A BEAM EXTRACTION CONTROL SYSTEM FOR THE SYNCHROTRON AT THE WAKASA WAN ENERGY RESEARCH CENTER

栗田哲郎

Tetsuro Kurita* The Wakasa Wan Energy Research Center

Abstract

A beam extraction system of the synchrotron at The Wakasa Wan Energy Research Center has been updated. In addition, a spill feedback system to obtain constant beam intensity has been improved. The design of the new system and results of the beam test of the spill feedback system are reported.

1. はじめに

若狭湾エネルギー研究センター加速器施設(W-MAST) は、タンデム加速器および、それを入射器としたシンク ロトロンによって、広範囲のエネルギーのイオンビーム (陽子:数 MeV-200 MeV; He, C:数 MeV/u-55 MeV/u) を様々な実験に供給している[1]。シンクロトロンから のビームは、がん治療の基礎研究および材料/生物/細胞 への照射実験に利用されている。

W-MAST のシンクロトロンでは、帯域ノイズを用い た RF キッカー法によって遅い取り出しを行っている。 すなわち、加速終了後に六極電磁石を励磁することによ り3次共鳴のセパラトリクスを形成する。周回する粒子 のベータトロン振動するに相当する周波数の高周波を横 方向に印加することよって周回粒子を拡散させる。セパ ラトリクスを超えた粒子は、急激に振幅を増大し出射用 静電デフレクタに入るとビームラインに出射される。周 回粒子のベータトロン振動数には拡がりがあるため、印 加する RF には約 1kHz 間隔の線スペクトラムで構成さ れる帯域ノイズを重畳させ周波数に広がりを持たせて いる。

出射されたビームはビームラインのウォブラー電磁 石によって照射野を形成して各種ターゲットに照射され る。そのため、数百 ms の時間をかけて一定強度でビー ムを出射する必要がある。出射電流量の時間構造は、出 射用高周波の振幅を時間的に変化させて制御している。

2. 出射制御系の更新

RF キッカーの周波数は帯域の中心となる単一周波数 (中心周波数)と線スペクトラムによる帯域ノイズを掛 け合わせて、広がりをもたせている。これまで、帯域ノ イズの生成には、ISA バスのカスタム DA ボードによっ て行われていた。振幅の時間制御には、同じ ISA バスの カスタム DA ボードが使われていた。Windows NT 4 が 動作する PC が必要であり、Windows NT 4 が動作する PC が必要であり、故障が発生した時に復旧できない状 況にあった。従来の出射制御系の構成を Fig. 1 に示す。

継続的な保守性を確保するために、汎用品の組み合わせ PC への依存性が低い出射制御系を開発した。

Figure 1: Old control system for beam extraction.

新しく開発したビーム出射制御系の構成を Fig. 2 に、 写真を Fig. 3 に示す。接続する PC への制約を少なくす るため、制御機器は全て USB で接続される。新たなカ スタム品は導入せず、既製品の組み合わせて設計した。 新旧の構成機器の一覧を Table 1 に示す。

Figure 2: New control system for beam extraction.

制御プログラムは、Windows 7 上で Visual Basic.Net および Windows Presentation Foundation を用いて製作 した。これまで、出射する粒子やエネルギーが変更にな るたびに中心周波数、ゲインパターン、フィードバック ゲインなどのパラメータを個別に設定していた。操作が

^{*} tkurita@werc.or.jp

PASJ2018 WEP094

Proceedings of the	th Annual Meeting of Particle Accelerator Soc	ciety of Japan
	August 7-10, 2018, Nagaoka, Japan	

	Old	New		
Band Noise	Custom DA Board (ISA)	Keysight Waveform Generator 33511B		
Gain Pattern	Custom DA Board (ISA)	Sankosha Arbitrary Waveform Generator SKI-04087		
Contact Signal	CONTEC PIO-32/32L(PC)	CONTEC DIO-3232LX-USB		
(Power ON/OFF, Status)				
Spill Feedback Circuit	Custom NIM Module	MTT sBox (DSP Development Kit)		
PC	Windows NT 4	Windows 7		

Table 1: Old and New Components of the Beam Extraction Control System

煩雑で、しばし設定漏れや間違いが発生していた。そこ で、すべてのパラメータを PC から制御できるようにし、 パラメータをまとめて一つの設定ファイルに保存できる ようにした。一つの設定ファイルの読み込みで、すべて のパラメータをまとめて設定を行えるようにし、設定間 違いを起きにくくした(Fig. 4)。

Figure 3: The inside of the RFK control box.

Figure 4: The operation window of the control software.

3. スピルフィードバックの改良

出射スピルを一定にするために、出射ビームの電流量 をイオンチェンバーで測定し、その信号を出射用高周波 振幅にフィードバックするフィードバック制御(スピル フィードバック)を改良した。従来のフィードバック制 御系は、図1にあるように、スピルモニタの信号から 生成したフィードバック信号を中心周波数の減衰器に フィードバックしていた [2]。ビームが増えた時に減衰 させることしかできず、スピルを十分に一定にすること ができなかった。そこで、図2のように、フィードバッ ク信号を出射高周波の振幅にフィードバックするように した。

フィードバック回路の詳細を Fig. 5 に示す。フィード バック信号の演算回路の作成には MTT 社の DSP(Digital Signal Processor) 開発キット sBox [3] を用いた。DSP を用いることによりパラメータや動作の変更が容易に なる。

Figure 5: A diagram of the spill feedback circuit.

帯域ノイズを用いた RF キッカー法のスピルの特徴と して、Fig. 6 の上段のようにスパイク状の変動が重畳す る。このスパイク状の変動を低域通過フィルター (LPF) で除去し、リファレンスと比較し差分を出射高周波のゲ イン信号としてフィードバックする。定常特性を改善さ せるために位相遅れ補償器を挿入している。

このフィードバック制御で、Proton 200MeV 出射時 に得られたスピル構造を得られた結果を Fig. 6 に示す。 Fig. 6 の中段が LPF 通過させたスピル信号であり、一 定になっていることがわかる。出射ビームスピル信号の LPF 出力の立ち上がり時間は 1ms 以下であった。270ms の出射期間の内、約 80% の区間で出射ビームを一定にす

Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan August 7-10, 2018, Nagaoka, Japan

PASJ2018 WEP094

ることができている。出射期間の後半20% ではビーム 電流が減少しているが、これはリング内の蓄積電荷が少 なくなってきたためである。リング内の電荷を完全に出 射しきることを確認するために、出射期間の終わりで出 射ビームスピルが減少することを許容している。リング 内に電荷を残すことを許容すれば、全出射期間にわたっ て一定の出射ビームスピルを得ることもできる。

フィードバック系のパラメータは日立製作所の先行事 例 [4] を参考にして調整した。

試験時の各種パラメータを Table 2 に示す。フィード バック系の各種時定数は先行する事例 [4] と実際の制御 結果を確認しながら調整した。

Figure 6: A beam spill of 200MeV proton beam under the feedback control.

Table 2:	Parameters	of Beam	Test of	f the	Spill	Feedback
Control v	with Proton 2	200MeV				

Synchrotron	Proton Extraction Energy	200 MeV
	Horizontal Tune	1.678
	RF frequency	3.460 ±0.025 MHz
	tune converted	1.682- 1.672
	RF spectrum division	1 kHz
Feedback	AD sampling frequency	100 kHz
system	$1/T_{LPF}$	500 rad/s
	$1/T_L$	5.2 rad/s
	$1/T_H$	500 rad/s

次に、Carbon 660MeV 出射時のフィードバック制御 によるスピル構造を Fig. 7 に示す。この時の、シンクロ トロンおよびビームのパラメータを Table 3 に示す。

LPF 通過後のスピル信号は概ね一定にできているが、 Proton ビームの場合に比べてスピルの立ち上がりが遅 く、そのためスピルの先頭でいくらかのオーバーシュー トが見られる。蓄積電荷量が少ないことが原因であるの か、イオン種が違うことが起因するのか、今後、調査す る予定である。

Figure 7: A beam spill of 660MeV Carbon beam under the feedback control.

Table 3: Parameters of Beam Test of the Spill FeedbackControl with Carbon 660MeV

Extraction Energy	660 MeV
Horizontal Tune	1.671
RF frequency	$3.96\pm0.025~\text{MHz}$
tune converted	1.677 - 1.661
RF spectrum division	1 kHz

4. まとめ

老朽化した出射高周波制御系の更新する新しい制御 系の開発を行った。スピルフィードバック制御系を改良 し、良好な結果が得られた。2018年6月から運用を開始 し、不具合の解消および使いやすさの改良を重ねている。 現在のスピルフィードバックではスピル信号とリファ レンスの差分をフィードバック信号としているため、シ ンクロトロンの蓄積電荷が変化すると出射スピルの時間 幅が変化する。シンクロトロンの蓄積電荷を変動もしく は変化させても、出射スピルの時間幅が変化しないよう に、蓄積電荷を考慮したフィードバック制御を行うこと を検討している。

参考文献

- S. Hatori *et al.*, "Developments and applications of accelerator system at The Wakasa Wan Energy Research Center" Nuclear Instruments and Methods in Physics Research B241 (2005) 862.
- [2] T. Kurita *et al.*, "AN IMPROVEMENT OF MATCHING CIRCUIT OF RF KICKER ELECTRODES" The Proceedings of EPAC'06, 2006.
- [3] http://www.mtt.co.jp/dsp/sbox_index.html
- [4] H. Nishiuchi et al., "医療用シンクロトロン向けビーム出射 制御システムの開発" 第6回日本加速器学会年会プロシー ディング, 2009.