PASJ2018 THP122

(γ,n)光核反応の励起関数の検証

VERIFICATION OF EXCITATION FUNCTIONS OF THE (γ, n) REACTIONS

野田秀作^{#, A)}, 井田博之^{A)}, 井村亮太^{A)}, 菊永英寿^{B)}, 塚田 暁^{B)}, 柏木 茂^{B)}, 高橋 健^{B)}, 南部健一^{B)}, 大浦泰嗣^{C)}

Shusaku Noda^{#, A)}, Hiroyuki Ida^{A)}, Ryota Imura^{A)}, Hidetoshi Kikunaga^{B)}, Kyo Tsukada^{B)}, Shigeru Kashiwagi^{B)}, Ken Takahashi^{B)}, Kenichi Nanbu^{B)}, Yasuji Oura^{C)}

^{A)} JFE Engineering Corporation

^{B)} Research Center for Electron Photon Science (ELPH), Tohoku University

^{C)} Tokyo Metropolitan University

Abstract

We measured the activities of ⁹⁹Mo that were generated by bombarding 15-50 MeV electron bremsstrahlung photons. The experiment was carried out at Research Center for Electron Photon Science (ELPH), Tohoku University. The generated activities in the irradiated ^{nat}Mo target were determined from the gamma-ray measurement using the High Purity Germanium (HPGe) detector. In order to verify the excitation function of ¹⁰⁰Mo(γ ,n)⁹⁹Mo reaction, the experimental setup was simulated with the Particle and Heavy-Ion Transport code System (PHITS) to determine the flux of bremsstrahlung photons. Then, the estimated activities were deduced from literature data of the ¹⁰⁰Mo(γ ,n)⁹⁹Mo excitation function multiplied by the bremsstrahlung photon spectrum. The experimental result shows that the literature data of (γ ,n) excitation function for ¹⁰⁰Mo can be used to estimate the activities generated by the bremsstrahlung photons.

1. はじめに

99mTc(テクネチウム)は、核医学検査に最も広く利用さ れている放射性核種である[1]。日本では年間約 400 TBq が日本アイソトープ協会を通じて国内の医療機関な どに供給されており、SPECT 検査として年間 100 万件が 実施され、その市場規模は年間 200 億円と言われてい る。一般に^{99m}Tcは⁹⁹Moのβ崩壊の娘核種として得られ る。99mTc の半減期が 6 時間である一方、親核種である ⁹⁹Moの半減期は66時間であるため、過渡平衡を利用し たミルキング法から 99mTc 取得し、放射性薬剤として診断 などへ利用される。親核種である ⁹⁹Mo は海外の研究用 原子炉において、高濃縮ウラン(235U)の核分裂生成物と して得られている。しかし、製造用研究炉の老朽化、火 山の噴火などによる航空輸送の遅延や、高濃縮ウランを 使用することによる安全保障上のテロの問題があり[2]、 最も広く利用されている放射性核種であるにもかかわら ず ⁹⁹Mo の供給は安定していない。このような問題から、 高濃縮ウランを使用しない ⁹⁹Moの国内製造方法が世界 中で検討されてきた[3]。

本研究では、電子線加速器によって発生した制動放 射線による¹⁰⁰Mo(γ,n)⁹⁹Mo反応を利用する製造方法に 着目し、過去の¹⁰⁰Mo(γ,n)⁹⁹Mo励起関数(反応断面積) の文献値を検証するための基礎実験を行った。ただし、 単色の光子エネルギーに依存する光核反応の励起関 数を取得するためには、Tagged photon ビームなどが必 要となり、その実験は容易ではない。そこで、ここでは電 子線加速器を利用した⁹⁹Mo製造方法を検討するため、 より実用的な基礎データとして、電子線エネルギーに依

noda-shusaku@jfe-eng.co.jp

存した ⁹⁹Mo 生成量を系統的に取得した。

先行研究による測定値として、¹⁰⁰Mo(γ,n)⁹⁹Mo 反応の 励起関数が EXFOR (Experimental Nuclear Reaction Data)[4]に収録されている。粒子・重イオン輸送計算コー ド PHITS (Particle and Heavy-Ion Transport code System)[5]によるシミュレーション計算から得られる、電 子線により発生した制動放射線スペクトル分布と、文献 値として入手できる¹⁰⁰Mo(γ,n)⁹⁹Mo反応の励起関数の掛 け合わせにより、ある電子線エネルギーに対する制動放 射線に起因した光核反応によって作られた ⁹⁹Mo 量を導 出した。

本実験で得られた ⁹⁹Mo 生成量とこれらのシミュレー ション計算によって推定した ⁹⁹Mo 生成量を比較すること によって、文献値である励起関数の検証を行った。

2. 実験

実験は東北大学電子光理学研究センターの大強度 電子線形加速器にて行った。電子線エネルギーが 15、 20、25、30、40 および 50 MeV の 6 点に対し実験を行っ た。電子線エネルギーごとの¹⁰⁰Mo(γ,n)⁹⁹Mo 生成量は、 高純度 Ge 半導体検出器によるガンマ線計測による放射 化法で決定することとした。

Figure 1 に照射ターゲットのセットアップ写真を示す。 加速された電子は厚さ50 µm のチタン窓を通して真空から空気中へ取り出される。本実験で使用した電子線は楕 円形であり、その大きさは照射実験前に酸化ベリリウム板 によって計測した。電子線ビームの詳細を Table 1 に示 す。制動放射線発生用ターゲットとして 2.06 mm タングス テン板を採用した。チタン窓から 107.6 mm 後方にタング ステン板と照射ターゲットとして天然存在比の Mo 箔 100

PASJ2018 THP122

mm × 100 mm ×厚さ 9.72 µm を 1 枚設置した。

Figure 1: Irradiation target setup.

Table 1: Specification of	of Electron	Beam
---------------------------	-------------	------

Energy (MeV)	Ellipse Size (X × Y mm)	Std. Dev. of Energy (%)
15	3.4 imes 3.3	1.0
20	1.9 imes 1.7	1.0
25	2.3 imes 2.4	1.0
30	2.2 imes 1.9	1.0
40	2.0 imes 1.9	1.0
50	2.8 imes 2.2	1.8

電子線の照射時間は、エネルギーによらず 10 分間とした。詳細な照射条件を Table 2 に示す。

照射後、同センターの加速器施設に併設されている 化学実験室にて、高純度 Ge 半導体検出器を用いたガ ンマ線スペクトロスコピーによって¹⁰⁰Mo(γ,n)反応により 生成した⁹⁹Mo 量を測定した。

Beam energy (MeV)	Average Current (µA)	Irradiation time (sec)
15	4.5 ± 1.1	600
20	14.4 ± 0.4	600
25	13.8 ± 0.7	600
30	14.7 ± 0.6	600
40	19.1 ± 0.8	600
50	21.4 ± 0.4	600

3. 解析

3.1 本実験における⁹⁹Mo 生成量の導出

Figure 2 に 30 MeV 電子線照射終了約1 時間 30 分 後の ^{nat}Mo 箔から検出したガンマ線スペクトルを示す。 ⁹⁹Moのβ崩壊に伴う739.5、181.1 および 777.9 MeVの ピークおよび ^{99m}Tc ガンマ崩壊による 140.5 keV のガン マ線が確認できた。これ以外に本計測により確認できた ガンマ線のピークは、⁹²Mo(γ,2n)⁹⁰Moによる 257.3 および 122.4 keV、⁹⁸Mo(γ,p)⁹⁷Nb による 657.9 keV、 ⁹⁷Mo(γ,p)⁹⁶Nb による 778.2 および 568.9 keV、 ⁹²Mo(γ,pn)⁹⁰Nb による 1129.2 および 2319.0 keV、対消 滅による 511 keV である。Ge 検出器を用いた測定を開 始するまでに経過した時間および測定中の壊変補正を 行い、⁹⁹Moの反応収率を導出した。

Figure 2: ADC spectrum of ^{nat}Mo target irradiated by 30 MeV electron bremsstrahlung photons.

3.2 シミュレーションによる ⁹⁹Mo 生成量の導出

電子線に起因する制動放射線によって作られる ⁹⁹Mo 放射能は以下の式で表すことができる。

$$A_{\text{EOB}} = nf \int_{0}^{E_0} P(E)\sigma(E)dE \cdot (1 - e^{-\lambda t})$$

= $nfY(E_0) \cdot (1 - e^{-\lambda t})$ (1)

この式では、本実験に使用した照射ターゲットは十分に 薄いため、ターゲット中では制動放射線は減衰しないと 仮定している。ここで、 A_{EOB} は照射後の⁹⁹Mo生成放射 能、nは照射ターゲット量(nat Mo中の 100 Mo数密度×放 射ターゲット厚さ×電子ビーム面積)、fは電流量;入射電 子数、 E_0 は加速電子エネルギー;制動放射線の最大エ ネルギー、P(E)は電子1個当たりの制動放射線スペク トル、 $\sigma(E)$ は光子エネルギーEに対する光核反応の励起 関数、 λ は 99 Moの壊変定数、tは照射時間、 $Y(E_0)$ は電 子 1個当たりの 99 Mo 平均生成収率である。

P(E)は、電子1個当たりに制動放射ターゲットから放 出されるX線スペクトルであり、PHITSを用いたシミュ レーションにより導出した。Figure 3 に 10、20、30、40 お よび 50 MeV 電子をタングステンに入射した場合の制動 放射線スペクトルを示す。PHITS により導出した制動放 射線スペクトルは、入射電子線エネルギーによらず実際

Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan August 7-10, 2018, Nagaoka, Japan

PASJ2018 THP122

の値をよく再現することが確かめられている[6]。

光核反応により生成される ⁹⁹Mo 量を推定するために は、制動放射線スペクトルに加えて、¹⁰⁰Mo(γ ,n)⁹⁹Mo 反 応の励起関数が必要となる。Beil ら[7]、Crasta ら[8]およ び Utsunomiya ら[9]などによって、実験的に励起関数が 測定されている。これらの値を Fig. 4 に示す。この測定 値を励起関数 $\sigma(E)$ とし、PHITS による制動放射線スペク トルを掛け合わせることにより $Y(E_0)$ を導出した。このよう な一連のシミュレーションにより得られた $Y(E_0)$ と、本実験 で得た A_{EOB} から求めた $Y(E_0)$ との比較を行った。

Figure 3: PHITS calculation results of bremsstrahlung Xray spectra generated by electron-bombarding onto W converter.

Figure 4: Literature data of $^{100}\text{Mo}(\gamma,n)^{99}\text{Mo}$ excitation function.

4. 結果

本研究によって得られた、⁹⁹Mo 生成量を実験値およ びシミュレーション結果を Fig.5 に示す。実験値と文献値 による推定値は、測定を実施した電子線エネルギー領 域に渡って、よく一致している。

Figure 5: Electron-energy dependent yields of ⁹⁹Mo production.

5. 考察

Figure 5 は、本実験値は過去の文献値である Beil らの励起関数を用いた計算結果を支持している。Beil らの 測定による励起関数は、巨大共鳴反応が支配的である 光子エネルギーが 30 MeV までの領域において、 ¹⁰⁰Mo(γ,n)⁹⁹Mo 反応を精度よく測定されていると考えるこ とができる。今後、⁹⁹Mo 製造用照射ターゲットの設計な どのシミュレーション計算への応用が考えられる。

6. まとめ

文献値である¹⁰⁰Mo(γ,n)⁹⁹Mo励起関数の検証を行うこ とを目的とし、電子線入射による制動放射線照射による ⁹⁹Mo生成収率の測定を行った。電子線入射により発生 する制動放射線をPHITSにより導出した。制動放射線エ ネルギースペクトルと文献値の励起関数を掛け合わせる ことで、入射電子線エネルギーに対する⁹⁹Mo生成収率 を推定した。実験値とシミュレーション結果はよい一致を 示した。Beilらによる過去の測定値は妥当であると考えら れる。

参考文献

- [1] アイソトープ等流通統計2017;
- https://www.jrias.or.jp/report/pdf/ryutsutoukei2017.pdf
 [2] T. Inoue., "国産化 ⁹⁹Mo/^{99m}Tc の医療運用に向けての議論一我が国における ⁹⁹Mo の国産安定供給の方向性と議題一", *RADIOISOTOPES*, vol. 62, pp. 667-678, 2013.
- [3] The Supply of Medical Radioisotopes: Review of Potential Molybdenum-99/Technetium-99m Production Technologies, https://www.oecd-nea.org/med-radio/reports/Med-Radio-99Mo-Prod-Tech.pdf
- [4] N. Otuka *et al.*, "Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration between Nuclear Reaction Data Centres (NRDC)", *Nucl. Data Sheets*, vol. 120, pp. 272-276, 2014.
- [5] T. Sato *et al.*, "Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02", *J. Nucl. Sci. Technol.*, vol. 55, pp. 684-690, 2018.

PASJ2018 THP122

- [6] Y. Iwamoto et al., "Benchmark study of the recent version of the PHITS code", J. Nucl. Sci. Technol., vol. 54, pp. 617-635, 2017.
- [7] H. Beil et al., "A study of the photoneutron contribution to the giant dipole resonance in doubly even Mo isotopes", Nucl. *Phys. A*, vol. 227, pp. 427-449, 1974.
 [8] R. Crasta *et al.*, "Photo-neutron cross-section of ¹⁰⁰Mo", *J.*
- Radioanal. Nucl. Chem., vol. 290, pp. 367-373, 2011.
- [9] H. Utsunomiya et al., "Photoneutron cross sections for Mo isotopes: A step toward a unified understanding of (γ,n) and (n,γ) reactions", *Phys. Rev. C*, vol. 88, p. 051805, 2013.