PASJ2018 THP058

KEK における ILC クライストロン用チョッパ型マルクス電源の改善と大電力試験

IMPROVEMENT AND HIGH-POWER TEST OF CHOPPER-TYPE MARX MODULATOR FOR ILC KLYSTRON AT KEK

中島啓光#, A), 明本光生 A), 川村真人 A), 夏井拓也 A), 徳地明 B), 澤村陽 B), 江偉華 C)

Hiromitsu Nakajima^{#, A)}, Mitsuo Akemoto^{A)}, Masato Kawamura^{A)}, Takuya Natsui^{A)}, Akira Tokuchi^{B)}, Yo Sawamura^{B)},

Weihua Jiang^{C)}

^{A)} High Energy Accelerator Research Organization

^{B)} Pulsed Power Japan Laboratory Ltd.

^{C)} Nagaoka University of Technology

Abstract

The Chopper-type Marx modulator, which consists of 20 units to provide a -120kV 140A 1.65ms 5pps pulse, is being developed to drive a 10MW L-band multi-beam klystron for the ILC. This paper describes about high power test of the modulator with Thales TH2104, 5MW L-band klystron, as the load, and some improvements of the problems which had been revealed at the high power test.

1. はじめに

国際リニアコライダー(ILC)では、約380台の10MW マルチビームクライストロンをRF源として使用する予定 になっている。10MW マルチビームクライストロン用のパ ルス電源には、低コスト、高信頼性、高効率などが要求さ れており、ILCのTechnical Design Report(TDR)では、 ベースラインデザインとして、SLAC National Accelerator Laboratory(SLAC)で開発されたP2 Marx を指標とした マルクス型の電源が採用されている[1,2]。

高エネルギー加速器研究機構(KEK)では、10MW マ ルチビームクライストロン用の電源として、長岡技術科学 大学及びパルスパワー技術研究所との共同研究で チョッパ型マルクス電源の開発を行っている[3, 4, 5]。 KEK では、昨年度、クライストロンを負荷として 20 ユニッ トで構成される ILC クライストロン用チョッパ型マルクス電 源の大電力試験を行い、さらに、その際に明かとなった 問題点の改善を行った。

2. チョッパ型マルクス電源

ILC で使用する予定の 10MW マルチビームクライスト ロン用のパルス電源に要求される主な仕様を Table 1 に 示す。

Table 1: ILC Klystron	Modulator Parameters
-----------------------	----------------------

Output Voltage	-120kV
Output Current	140A
Pulse Width (Flat-top)	1.65ms
Pulse Repetition Frequency	5Hz
Output Pulse Flat-top	$<\pm 0.5\%$
Energy deposited into klystron during a gun spark	< 20J

ILC クライストロン用チョッパ型マルクス電源は、-120kV の出力電圧を得るために 20 ユニットで構成され ており、各ユニットは、Fig. 1 に示すような降圧チョッパ回 路を組み込んだマルクス回路4段で構成されている。各 マルクス回路のコンデンサCMは、充電用のスイッチSWc を ON することにより、ダイオードを介して並列に充電さ れ、放電用のスイッチ SWpを ON することによりマルクス 回路4段の充電電圧が重ね合わされて出力される。さら に、放電用のスイッチ SWpを PWM 制御することにより、 コンデンサ CM の充電電圧が低下することによる出力電 圧の低下を補正する。各マルクス回路は、最大-2kVまで 充電され、-1.6kV、1.65ms のフラットな出力パルス電圧 が得られる。1 ユニットの出力電圧は、マルクス回路4段 の重ね合わせとなるため、最大で-6.4kVとなり、20ユニッ トで構成されている ILC クライストロン用チョッパ型マルク ス電源は、1 ユニットが故障しても-120kV の出力パルス 電圧が得られる設計となっている。また、各ユニット内の マルクス回路は、50kHzでPWM 制御が行われており、4 段のマルクス回路で PWM 制御の位相を 5µs ずつずら すことにより、リップルを低減している。さらに、ILC クライ ストロン用チョッパ型マルクス電源全体では、20 ユニット の PWM 制御の位相をずらすことで、出力電圧のリップ ルを低減する。

各ユニットの制御は、1 ユニットに 1 枚実装される制御 基板によって行われ、マルクス回路 4 段に充電用のゲー ト信号、放電用の PWM 制御されたゲート信号を供給し、 過電圧、過電流など高速で動作する必要のあるインター ロックの制御を行う。また、各ユニットの充電電圧、出力 電圧等のモニターも行っている。各ユニットの制御基板 は、光ケーブルによって Ethernet に接続されており、 Ethernet 経由で制御用の PC から HV 及び TRIG の ON/OFF、充電電圧の設定、過電流、過電圧の設定、 PWM のパターンの設定などを行う。

hiromitsu.nakajima@kek.jp

Figure 1: Simplified schematic of the Chopper-type Marx unit.

ILCクライストロン用チョッパ型マルクス電源の各ユニットは、Fig. 2 に示すように絶縁トランスを介して 20kHz の高周波で電力が供給され、各ユニット内にある整流回路で整流され、最大で-2kV まで充電される。設計では、各ユニットに1台のインバータユニットで充電することになっているが、現在は、インバータユニットで充電している。 インバータユニット1台で4台のユニットを充電している。また、制御回路用の電力は、各ユニット間の絶縁トランスを介して供給される。

Figure 2: Block diagram of the Chopper-type Marx modulator.

3. クライストロン負荷での試験

Thales の 5MW クライストロン TH2104 を負荷にして、 繰り返し 5Hz で ILC クライストロン用チョッパ型マルクス 電源の試験を行った。クライストロンを負荷にして試験を 行うためには、クライストロンの保護のために真空や冷却 水のインターロックが必要となる。KEK では、全体制御シ ステムとして、外部機器を制御するために必要となる接 点出力、外部インターロックを入力するための接点入力、 PC と接続するための Ethernet 等を備えた Control Board を製作し、全体制御盤として Trigger Board と共にユニッ ト化した。Figure 3 に全体制御盤のブロック図を示す。

Figure 3: Block diagram of the total control system for the Chopper-type Marx modulator.

クライストロンを負荷とした試験では、充電電圧 1000V でPWMのデューティー比を86%から97%まで直線的に 増加させることにより、Fig.4に示すように出力電圧-74kV、 出力電流 39.6A、繰り返し 5Hz で運転できることが確認 できた。しかし、その際に、充電器のインバータユニット で使用している電解コンデンサの温度が 50℃程度まで 上昇しており冷却の強化が必要であることと筐体内上段 のマルクスユニットの温度異常が発生することがあること から筐体の冷却の強化も必要となることが判明した。

また、充電電圧 1100V、繰り返し 1Hz で PWM 制御の デューティー比 100% 一定として試験を行った所、出力 パルス電圧の立ち上がり部のオーバーシュートによる過 電圧のために出力端付近で放電があり、高圧側の 2 ユ ニットが故障した。20 ユニット全てにおいて、ユニット単 体での負荷短絡試験を行い、問題がないことは確認して あったが、20 ユニットでは、各ユニットに絶縁トランスやユ ニットと筐体間の構造的な浮遊容量があり、その浮遊容 量からの急峻なサージ電流が原因で故障したのでない かと推定された。

Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan August 7-10, 2018, Nagaoka, Japan

PASJ2018 THP058

Figure 4: Waveforms of the Chopper-type Marx modulator.

4. 問題点の改善

4.1 冷却の強化

充電器のインバータユニットの冷却を強化するために Fig. 5 に示すようにインバータユニットの背面に冷却ファ ンを追加し前面パネルにスリットを入れた。

Figure 5: Photographs of the inverter units with the cooling fan.

インバータユニットの冷却強化の改造後、充電電圧 800V、繰り返し 5Hz で 30 分の連続運転を行い、イン バータユニット内の電解コンデンサ、フィルムコンデンサ の温度上昇を確認した。Figure 6 にインバータユニット内 部のコンデンサの温度を測定した結果を示す。Figure 6 からわかるように、各コンデンサの温度上昇は低く抑えら れており、問題であった電解コンデンサの温度は、約 2℃の温度上昇で 30℃程度に収まっている。

また、筐体の冷却を強化するために筐体天板にも冷 却ファンを追加しており、その結果、筐体内上段のマル クスユニットの温度異常のインターロックが発生することも なくなった。

Figure 6: Measurement result of the inside capacitors' temperature of the invertor unit.

4.2 負荷短絡保護回路の追加

負荷短絡時の浮遊容量からのエネルギーによる過電 流を抑制するためにコモンモードのフィルタを追加した。 コモンモードのフィルタは、Fig. 7 に示すようにケイ素鋼 板のコア 6 個に高圧側と低圧側の出力端子からの耐圧 10kV のシリコンケーブル 2 線を1 コアにつき 26 巻きし たもので、Fig. 8 に示すように高圧側の 5 ユニットに追加 した。

Figure 7: Block diagram of the Chopper-type Marx unit with common mode filter.

Figure 8: Photograph of the Chopper-type Marx units with common mode filter.

負荷短絡保護回路を追加した 5 ユニットに関して、ユ ニット単体で浮遊容量に見立てたコンデンサをユニット に接続し充電後、放電することで試験を行い、負荷短絡 時の電流が抑えられることとユニット内の素子が壊れな いことを確認した。その後、KEK において 20 ユニットで の負荷短絡試験を行った。Figure 9 は、20 ユニットで充 電電圧を 800V として、負荷短絡試験を行った時の出力 電圧、出力電流の波形であり、出力電圧が約-60kV で負 荷短絡が起こり、過電流のインターロックが作動し、HV OFF となっている。負荷短絡の試験後、動作確認の試験 を行い、問題がないことが確認できた。

Figure 9: Waveforms of the output load short test.

4.3 ソフトスタート

ILC クライストロン用チョッパ型マルクス電源では、 PWM のデューティー比を 90%から 100%というように直 線的に増加させることで出力電圧の補正を行っているが、 その場合、立ち上がり部分にパルス平坦部の 1.2 倍程度 の電圧がオーバーシュートとして出てしまう。そこで、立 ち上がり部分のデューティー比を徐々に増加させるソフト スタート制御を行うことで立ち上がり部分のオーバー シュートを抑える。充電電圧 800V でソフトスタート制御を 行った時の出力電圧波形を Fig. 10 に示す。このように、 立ち上がり部分のオーバーシュートは、ソフトスタート制 御を行うことで抑えることができる。また、ソフトスタートの パターンを調整することにより、立ち上がり時間を 40µs 程 度にすることができた。

Figure 10: Waveforms of the output voltage rise time.

4.4 パルス平坦部の補正

ILC クライストロン用チョッパ型マルクス電源では、出 力電圧の補正は、PWM のデューティー比を直線的に増 加させることで行っているが、コンデンサの充電電圧は、 指数関数的に減少していく。そのため、出力電圧のパル ス平坦部は、前半部分と後半部分でわずかに電圧の差 ができてしまう。そこで、出力電圧のパルス平坦部の平 坦度を補正するために出力電圧波形から計算して、 PWM のデューティー比を補正することによって Fig. 11 に示すように平坦度が約 0.23%(p-p)のよりフラットな平 坦部を得ることができた。

5. まとめ

クライストロンを負荷として ILC クライストロン用チョッパ 型マルクス電源の大電力試験を行い、出力電圧-74kV、 出力電流 39.6Aで繰り返し5Hzの運転を行った。さらに、 その試験の際に明らかとなった充電器のインバータユ ニット内部の温度上昇、チョッパ型マルクス電源筐体内 部の温度上昇、負荷短絡時の浮遊容量に起因する過電 流の問題に関して対策を行い、問題点が改善されたこと を確認した。また、PWM のパターンを調整することにより、 出力電圧波形の最適化を行った。今後は、長時間のラ ンニング試験、及び充電電圧 1000V で繰り返し 5Hz の 試験を行う予定である。

参考文献

- ILC Technical Design Report Volume 3 Accelerator, 2013; http://www.linearcollider.org/ILC/Publications/Technical-Design-Report
- [2] M.A. Kemp *et al.*, "The SLAC P2 Marx", Pulse Power Proceedings of International Power Modulator and High Voltage Conference, San Diego, CA, USA, 2012.
- [3] A. Tokuchi et al., "ILC用 SiC MOS FET MARX 方式クラ イストロンモジュレータ用電源の開発", Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan, August 8-10, 2016, Chiba, Japan, PASJ2016-TUOM08;

https://www.pasj.jp/web_publish/pasj2016/proceedings/P DF/TUOM/TUOM08.pdf

- [4] H. Nakajima et al., "KEK における ILC クライストロン用 チョッパ型マルクス電源の現状", Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan, August 8-10, 2016, Chiba, Japan, PASJ2016-TUP034; https://www.pasj.jp/web_publish/pasj2016/proceedings/P DF/TUP0/TUP034.pdf
- [5] H. Sasaki et al., "チョッパ型 MARX 電源の特性改善", Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan, August 1-3, 2017, Sapporo, Japan, PASJ2017-WEP059; https://www.pasj.jp/web_publish/pasj2017/proceedings/P DF/WEP0/WEP059.pdf