PASJ2018 FSP015

IFMIF 原型加速器の現状

STATUS OF IFMIF PROTOTYPE ACCELERATOR

春日井敦^{*, A},赤木智哉^A,蛯沢貴^A,平田洋介^A,池田幸治^A,小又将夫^A,近藤恵太郎^A,前原直^A, 坂本慶司^A,下崎義人^A,新屋貴浩^A,須藤美智雄^A,杉本昌義^A,武石沙綾^A,カラフィリップ^B, ジッコエルベ^O,ハイディンガーローランド^O,フィリップスガイ^O

Atsushi Kasugai^{#, A)}, Tomoya Akagi^{A)}, Takashi Ebisawa^{A)}, Yosuke Hirata^{A)}, Yukiharu Ikeda^{A)},

Masao Komata^{A)}, Keitaro Kondo^{A)}, Sunao Maebara^{A)}, Keishi Sakamoto^{A)}, Yoshito Shomosaki^{A)}, Takahiro Shinya^{A)},

Michio Sudo^{A)}, Philippe Cara^{B)}, Herve Dzitko^{C)}, Roland Heidinger^{C)}, Guy Phillips^{C)}

^{A)}QST Rokkasho Fusion Institute

^{B)}IFMIF/EVEDA Project Team

^{C)}Fusion for Energy (F4E)

Abstract

Significant progress was obtained on the installation and commissioning of the Linear IFMIF Prototype Accelerator (LIPAc). In the injector experiment, the emittance of ~ 0.2π mm.mrad has been demonstrated, which is well smaller than that of the required value (0.3π mm.mrad). Eight sets of RF modules (175MHz, 200kW for each) were connected to the RFQ with 8 coaxial waveguides, and RF conditioning was started. With a simultaneous power injection from 8 RF modules into the RFQ and careful conditioning, a required RF filed for the 5MeV D+ beam acceleration was obtained at short pulse. The pulse extension is underway toward the CW operation. The first H+ beam acceleration has started in June 2018.

1. はじめに

現在、 「核融合炉による数 GW の発電実証」を目 的とした核融合原型炉(DEMO)の検討が進められ ている。DEMO の炉心では 1 億℃以上の重水素と 三重水素の核融合反応によって、14 MeV という非 常に高いエネルギーの中性子が連続的に発生し、炉 を構成する材料に照射損傷等の影響を及ぼす。従っ て DEMO の実現のためには、14 MeV の高エネル ギー中性子に耐えうる材料の開発が課題の1つとな る。この課題克服のために、加速器駆動型中性子源 を利用した国際核融合材料照射施設(International Fusion Materials Irradiation Facility, IFMIF) が検討さ れている。IFMIF では 140 mA の重陽子を 40 MeV まで定常的に加速させ、重陽子-リチウム(d-Li)核 反応を利用して「DEMO 炉心における 14 MeV の中 性子スペクトル」を模擬する中性子を発生させる予 定である。生成された中性子を利用して材料照射試 験を行う計画となっている。

IFMIF の工学設計・主要機器の設計・製作・試験 を行い、IFMIF の建設判断に必要な技術実証を行う ために、現在、原型加速器 LIPAc (Linear IFMIF Prototype Accelerator)の建設が進められている。 LIPAc は、重水素イオン源-低エネルギービーム輸 送ライン (LEBT) -高周波四重極加速器 (RFQ) -中エネルギービーム輸送ライン (MEBT) -超伝導 加速器 (SRF) -高エネルギー輸送ライン (HEBT) -ビーム診断系 (D-Plate) -ビームダンプ (BD) か ら構成された、全長約 36 mの線形加速器であり、9 MeV-125 mA の大強度重陽子ビームを連続運転する 設計となっている。IFMIF 加速器の成否の鍵を握る のは、空間電荷によるビーム発散力が大きい低エネ ルギー部の大電流加速実証である。そのため RFQ までの 5 MeV 以下の低エネルギー部については、 IFMIF 加速器と LIPAc で同じ構成となっている(図 1)。

LIPAc を構成する各機器の製作・調達は、フラン ス原子力・代替エネルギー庁(CEA)サクレー研究 所、イタリア国立核物理学研究所(INFN)レニャー ロ研究所、スペインエネルギー環境技術センター (CIEMAT)の3機関が主に担当し、Fusion for Energy (F4E)という欧州の実施機関が欧州側の各 研究所を取りまとめている。これまでに欧州の各研 究機関において、LIPAcの設計・製作が行われてき ており、現在六ヶ所核融合研究所において組立・調 整・ビーム試験を段階的に実施している[1]。

2017 年度及び 2018 年度に開発・更新した主要機 器の状況、ビーム調整の進捗状況、及び今後の予定 について報告する。

2017 年度及び 2018 年度 主要機器 の開発・更新状況

2.1 イオン源について

LIPAc における重陽子イオン源の性能として、取り出しエネルギー:100 keV、電流値:140 mA 以上 (CW)、規格化エミッタンス:0.3π mm.mrad 以下 の仕様が求められる。このような重陽子イオン生成 のために、2.45 GHz のマグネトロンを用いた ECR イオン源が採用されている。イオン源の引き出し系 としては、プラズマ電極、中間電極、2 枚のグラウ ンド電極、及び電子逆流による機器損傷を抑制する

[#]kasugai.atsushi@qst.go.jp

Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan August 7-10, 2018, Nagaoka, Japan

PASJ2018 FSP015

Figure 1: Schematic view of LIPAc.

ためのリペラー電極の 5 電極構成となっている(図 2)。

イオン源は 2012 年にフランス CEA サクレー研究 所において性能確認試験(重陽子ビーム 100 keV / 140 mA) に合格し、2014 年から六ヶ所での据付を 開始した。2015 年から重陽子の加速試験を開始し、 ビームエネルギー100 keV、ビーム電流 109 mA、 duty 10 %で、規格化エミッタンス 0.25π mm.mrad の 重陽子ビーム生成を確認した[2]。

Figure 2: Schematic view of ECR ion source.

その後の CW 運転での低エミッタンス調整試験後、 リペラー電極および第 1 接地電極に損傷が観測され た。調査の結果、リペラー電極および第 1 接地電極 のアパーチャーが設計通りではなく、リペラ電界が 不十分になることが判明した。CEA にて電極の再設 計を行い、六ヶ所核融合研究所にて 3D 精密アライ メント計測を行いながら、ECR イオン源において新 電極の据付を行った。

2017 年に、新電極に更新されたイオン源を用いて、 ビームエネルギー100 keV、duty 5 %の条件下で、電 流値を変えながらエミッタンス測定試験を行った (図 3)。目標電流 140 mA を超える大電流におい て、2015 年測定時の 0.25π mm.mrad[2]よりも更に良 好なエミッタンス (~0.145 π mm.mrad) のビームを 得ることができた。現在、RFQ へのビーム入射試験 (pi.mm.mrad) 0.16 175mA 0.15 165mA 0.14 0.13 Emittance (155mA 0.12 0.11 0.10 20 25 30 15 35 Voltage of Intermediate Electrode (kV)

に向けた調整運転を行っている。

Figure 3: Normalized emittance of high current D+ beam depending on medium-electrode voltage.

2.2 RFQ について

LIPAc では、全長 9.8 m という世界最長の RFQ が 使用される。RF モジュール 1 台につき 200 kW の四 極管ユニットが使用されており、8 台の RF モ ジュールから RFQ へ、周波数 175 MHz の電磁波が 供給される。

2017 年には真空系[3]、冷却系、導波管、及び制 御系[4]の接続を完了し、RF モジュール 8 台から RFQ への同時 RF 入射を行いながら、RFQ のコン ディショニングを開始した[5]。

2018 年 1 月、重陽子ビーム加速に必要な加速電圧 132 kV に到達した(繰り返しは 1 Hz、パルス長は 20 μ s)。その後、RF 電圧を陽子ビーム加速に必要 な 77 kV に固定し、繰り返し 1 Hz の状態でパルス 幅を徐々に伸ばすという方向でコンディショニング を継続した。コンディショニング期間中、四極菅破 損、ダミーロード破損や、RF ウィンドウ破損(図 4) による RFQ での大気暴露などのトラブルが発生し たが[6]、2018 年 6 月、陽子ビームの加速が可能と なる条件(パルス幅 1 ms 程度、繰り返し 1 Hz で RF 電圧 77 kV)にまで到達した。RFQ のコンディショ ニングは引き続き継続中である。 PASJ2018 FSP015

Figure 4: Damaged RF window of RFQ coupler.

3. ビーム調整の進捗状況

RFQ コンディショニングにより陽子ビーム加速条 件を満足したので、現在、RFQ によるビーム加速試 験を行っている。装置のセットアップを図 5 に示す。 現在は ECR イオン源-LEBT-RFQ-MEBT の下流に、 ビームを診断するための D-Plate 及び低エネルギー ビームダンプ (LPBD) が仮設置されている。

不要な放射化を避けるため、目的の加速粒子であ る重陽子ではなく、陽子を用いて初期の加速試験を 行っている。陽子ビームについて(1) RFQ 入口での Twiss パラメータとエミッタンスを重陽子ビームの ものと同じにし、(2) 電流とエネルギーを重陽子 ビームの半分にすることで、重陽子ビームと同等の 空間電荷効果を陽子ビームに付与することができ、 重陽子加速を模擬した RFQ 加速試験が陽子ビーム で可能となる。

Figure 5: Present accelerator components of LIPAc.

Figure 6: Current signal at LEBT, MEBT, DP and LPBD on first proton beam acceleration by RFQ at LIPAc.

2018 年 6 月 13 日、LIPAc において RFQ による陽 子ビームの初加速を観測した[7]。入射ビームのパル ス幅 300 μ sec、繰り返し 1 Hz の条件において、 LEBT における電流値は 7 mA で、RFQ の透過率は 約 30%であった (図 6)。その後、ソレノイド磁場 やステアリング磁場の調整を行い、現在は LEBT で の電流値 20mA において RFQ における透過率は約 95%を達成している[7]。また Time of Flight 法による 計測で、陽子が設計値通り 2.5MeV まで加速されて いることが確認された。今後、重陽子に関する加速 試験も実施する予定である。

4. 今後の予定

SRF 下流に設置される HEBT 及び BD については、 スペイン CIEMAT による組立試験終了後(図 7)、 六ヶ所核融合研究所へ輸送し、2018 年秋から据付作 業を開始する予定である。

Figure 7: (a) HEBT and (b) BD at CIEMAT.

SRF に関しては、2017 年 4 月に CEA サクレー研 究所において実機の超伝導空洞の第 1 号機(図 8) の大電力実証試験を実施し、4.5 MV / mの加速電界 を安定に達成した。六ヶ所サイトではアセンブリ作 業に向けて、2018 年 7 月よりクリーンルームの建設 を開始し、2018 年 10 月よりアセンブリ作業を開始 する予定である。2019 年度、SRF リニアックのコン ディショニングを開始し、2020 年 1 月より全システ ムを用いたビームコミッショニングを開始する予定 である。

PASJ2018 FSP015

Figure 8: SRF cavity.

参考文献

- [1] A. Kasugai et al., "IFMIF/EVEDA 原型加速器の現状", Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan.
- [2] Y. Okumura et al., "Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector", Rev. Sci. Instrum. 87, 02A739 (2016).
- [3] K. Kondo et al., Nuclear Materials and Energy. to be accepted.
- [4] Y. Hirata et al., Nuclear Materials and Energy. to be accepted.
- [5] T. Shinya et al., Nuclear Materials and Energy. to be accepted.
- [6] E. Fagotti, "Beam Commissioning of the IFMIF EVEDA
- [6] E. Fagott, Dean commissioning of the IFAC2018, Very High Power RFQ", Proceedings of the IPAC2018, Vancouver, Canada, April 29 May 4, 2018, THXGBF2.
 [7] K. Kondo *et al.*, "RFQ Beam commissioning of IFMIF/EVEDA prototype accelerator", Proceedings of the ICM A start of Destine Accelerator Society of 15th Annual Meeting of Particle Accelerator Society of Japan, Nagaoka, Japan, Aug. 7-10, 2017, WEOLP02.