PASJ2018 FSP012

京都大学自由電子レーザ施設の現状

PRESENT STATUS OF FREE ELECTRON LASER FACILITY AT KYOTO UNIVERSITY

全炳俊^{#, A)}, 茶谷 脩也^{A)}, Krainara Siriwan^{A)}, Torgasin Konstantin^{A)}, 紀井俊輝^{A)}, 増田開^{A)}, 大垣英明^{A)} Heishun Zen^{#, A)}, Shuya Chatani^{A)}, Siriwan Krainara^{A)}, Konstantin Torgasin^{A)}, Toshiteru Kii^{A)}, Kai Masuda^{A)}, Hideaki Ohgaki^{A)}

^{A)} Institute of Advanced Energy, Kyoto University

Abstract

An oscillator-type mid-infrared Free Electron Laser (FEL) named KU-FEL has been developed at the Institute of Advanced Energy, Kyoto University for energy related researches. Recently, a THz coherent undulator radiation source driven by a compact-accelerator using a photocathode RF gun has been developed. In this paper, the present statuses of those light sources are reported.

1. はじめに

京都大学エネルギー理工学研究所では、エネルギー 関連研究への応用を目指し、中赤外自由電子レーザ装 置 (Kyoto University Free Electron Laser, KU-FEL, Figure 1)を開発してきた[1, 2]。これまでに、波長 3.5~ 23 μ m での発振に成功しており[3]、固体試料や薄膜の ポンプ・プローブ分光[4-7]や生物試料への照射[8]等、 幅広い応用実験に供されている。

KU-FEL 装置は周波数 2856 MHz のマイクロ波で駆動する 4.5 空胴高周波電子銃と3 m 加速管、ビーム輸送部、アンジュレータ、光共振器により構成されている [1,2]。Figure 1 に 2018 年 7 月現在の FEL 装置概略図 を示す。2011 年 12 月には、

JAEA の ERL-FEL にて使用されていた 1.8 m アン ジュレータ[9]をそれまでに使用していたアンジュレータ [1]と交換すると共に、光陰極高周波電子銃の導入に向 けて、FEL 光共振器長を従来の 4.514 m から 5.039 m へと変更した。この共振器長を光が往復するのに要する 時間は既設モードロックレーザ発振器の繰り返し周波数 89.25MHz の 3 周期分に当たる。また、それと同時に光 共振器を再設計し、短波長での光取り出し損失が小さく なる様に上流ミラーに設けた光取り出し穴の穴径をこれ までの 2 mm から 1 mm へと小さくした。上記の更新と 2013年度に行ったアンジュレータダクトの更新により、現 在、波長 3.5-23 µm において発振可能となっている。ま た、2013年には、ビーム位置モニタとそれを用いた位 置・エネルギー・加速管位相のフィードバック制御を本格 的にユーザー運転に導入し、加速器の安定性が向上す ると共に、日々の運転条件の再現性が向上している。

中赤外 FEL の開発に加えて、近年は光陰極高周波 電子銃で発生させた電子バンチをバンチ圧縮器で圧 縮し、1 ps 程度の短バンチにした後に、アンジュレータ に入射する事で強い準単色 THz 光を発生させるコヒー レントアンジュレータ放射(Coherent Undulator Radiation: CUR)光源の開発も行っている[10,11]。THz-CUR 光源

の概略図も Fig. 1 に示した。THz-CUR 光源は専用の

光陰極高周波電子銃を持つが、高周波源と光陰極駆動 用レーザを KU-FEL 用電子銃と共有している。2015 年 4 月に光陰極高周波電子銃からの電子ビーム発生に成 功した。その後、2016 年 3 月にバンチ圧縮器の設置を 完了、2016 年 4 月にコヒーレント遷移放射を用いたバ ンチ圧縮条件の確認を行った。そして、2016 年 7 月に アンジュレータの設置を完了し、2016 年 8 月にコヒーレ ントアンジュレータ放射の発生を確認した。

Figure 1: Layout of MIR-FEL and THz-CUR source in July 2018.

2. 京都大学中赤外自由電子レーザの性能

KU-FELの2018年7月現在の性能をTable 1に示 す。2018年7月28日に行ったユーザー利用実験後の FEL発振状況確認時に、波長4.9 µmにて最大マクロパ ルスエネルギー41.8 mJを記録した。その際の写真を Fig. 2 に示す。これはFEL光共振器の取出し穴から約 12 m輸送した先にある光学台上で測定したものであり、 昨年度までの最大マクロパルスエネルギー30 mJを大き く上回るものである。これは依然として、運転パラメータの 調整により、より大きな光出力を得られる可能性が有る事 を示唆している。実際のところ、この数日前に、アンジュ レータ上流に設置された BPMの波形をリアルタイム解 析し、マクロパルス内でのビーム位置変動をモニタ可能

[#] zen@iae.kyoto-u.ac.jp

とし、その情報に基づき、マクロパルス中でビーム位置変動が小さくなる様に運転パラメータを調整する事で、最 大マクロパルスエネルギーの記録を更新する事が可能と なった。同様の調整を行う事で、他の波長においても、こ れまで以上の出力が得られると考えられる。

また、FEL の性能を示す指標の一つに、電子ビーム から FEL 光にどれだけのエネルギーが受け渡されたか を示す、引き出し効率がある。アンジュレータ通過後の 電子ビームエネルギー分布の時間発展を測定する事で この引き出し効率の測定を行い、発振波長 11.6 μm に おいて、約 5%という高い引き出し効率が達成されている 事が分かった。これは常伝導加速器を用いた FEL で報 告された最高の引き出し効率であり、バンチ長がスリッ ページ長よりも長く、マクロパルス内での絶妙なバンチ周 波数変調により達成されたと考えられる[12]。

Table 1: Performance of KU-FEL

Wavelength Range	$3.5 - 23 \mu m$
Max. Macro-pulse Energy*	41.8 mJ @4.9 μm
Typ. Macro-pulse Duration	2 μs
Max. Micro-pulse Energy*	7.3 μJ @4.9 μm
Micro-pulse Duration [13]	0.6 ps @12 μm
Typ. Bandwidth	3%-FWHM
Max. Extraction Efficiency [12]	5% @11.6 µm

*Observed after 12 m transport.

Figure 2: The maximum macro-pulse energy available at the user station #1. This was recorded after a user experiment on 28th July, 2018.

3. KU-FEL 稼働状況

Figure 3 に KU-FEL 駆動用電子線形加速器の 2017 年度における稼働状況を示す。総運転時間は 388 時間 であった。放射線管理上の年間最大運転可能時間(960 時間)の約 40%であり、まだまだマシンタイムに余裕が有 る状況である。Figure 4 に 2009 年度以降の総運転時間 とユーザー利用時間の履歴を示す。2010 年度までは加 速器の R&D がメインであったが、2011 年度から 2013 年度にかけてユーザー利用実験が増加した。2013 年 度には、総運転時間の約 72%がユーザー利用実験に 供された。2014 年度は THz-CUR 駆動用高周波電子 銃増設作業や熱陰極高周波電子銃中熱陰極ヒータ通 電用ラインの破断によるトラブルの為、運転時間が短 くなり、255 時間となった。これは、昨年度も報告した高 周波電子銃用クライストロンモジュレータのコンデンサ不 良と内部ユーザーの利用時間が短くなった事が主要因 である。2016年度はまだ不良コンデンサの交換が終 わっておらず、運転時間が延びなかったが、2017年度4 月にコンデンサの全交換を終了した。あまり大きな増加 ではないが、2017年度は2016年度と比べて、運転時間 が延びた。また、総運転時間の約83%がユーザー利用 実験に供された。

2018 年度は所外共同利用・共同研究の件数が 2017 年度の 8 件から 10 件に増加しており、ユーザー利用時 間の更なる増加を見込んでいる。前述の通り、モニタ系 の充実とともに、運転条件の最適化も進み、KU-FEL 自 身の性能は年々向上しており、様々な応用実験に利用 可能な性能が得られている。経年劣化に起因するトラブ ルに対処しながら、施設の安定運転を実現し、ユーザー 利用の拡大を更に進めていく予定である。

Figure 3: Operation time of KU-FEL facility in FY2017. The adjustment of accelerator, machine tuning for FEL lasing, study of the driver linac and FEL parameter measurements are included in "Others".

Figure 4: History of total operation time and user experiment time of KU-FEL since 2009. The maximum operation time per year is 960 hours, which is limited by radiation restriction.

4. トラブルおよび問題点

4.1 高周波窓の真空漏れ

2013~2017 年度の年会でも報告したが、進行波型加速管の上流側の RF 窓から加圧時に SF6 ガスが RF 窓

PASJ2018 FSP012

を通って真空側に漏れるという問題が発生している。加速器室の室温と加速管部の真空度が強い相関を示しており、夏季に真空度が悪化する。交換用 RF 窓が調達済みであるので、症状の推移をみて交換タイミングを決める予定である。

4.2 電子銃用クライストロンモジュレータのサイラトロン ノイズ増加

電子銃用クライストロンモジュレータの放電スイッチとし て、サイラトロン(TRITON 社製 F-117)が用いられている。 近年、放電時のノイズが増加すると共に、パルス毎のノイ ズの強度が不安定になるという現象が生じている。そして、 このノイズ増加が原因と考えられる PFN 高圧充電電源 の制御ボードの異常・故障が発生する様になった。幸い、 予備のサイラトロンが一本あるので、PFN 製造メーカと相 談しながら交換する事を考えている。また、現在使用して いるサイラトロンは既に入手不能になっており、半導体ス イッチとの置き換えを考えており、PFN 製造メーカと相談 しつつ、大学本部への予算要求を行っている。

5. 施設整備状況

更により多くのユーザーに利用して頂ける様、加速器 及び利用環境の整備を引き続き行っている。以下に案 件毎に整理して述べる。

5.1 光陰極高周波電子銃を用いた THz 光源開発

2009 年度に KEK の大学等連携支援事業の下、2009 年度に 1.6 空胴高周波電子銃(改良型 BNL Type Gun-IV)を製作したのに端を発し、これまで、継続して光陰極 高周波電子銃を電子源として用いた THz コヒーレントア ンジュレータ放射(THz-CUR)の開発を継続して行ってき た[14]。2017 年度は構成された THz 検出器を用いて、 絶対強度測定を行い、その結果として周波数 170 GHz において、1 ミクロパルス当たり約 1.3 µJ、ピークパワー 約 20 kW の 10 サイクル放射の発生に成功している事が 確認された[15]。また、バンチ電荷に対する放射強度の 依存性から、大電荷時に空間電荷効果の影響でパルス 圧縮が上手くできなくなり、出力が飽和するという結果が 得られている[15]。これを受けて、どの様にして、空間電 荷効果の影響を低減し、大電荷条件で短いバンチ長を 得るかの検討を行っている[16]。

5.2 高速焦電検出器の導入と光共振器損失の調査

昨年度に報告した様に[14]、KU-FEL の長波長側発振限界は23 μ m であり、また、波長 13 μ m 以長ではマクロパルスエネルギーが顕著に低下していく事が分かっている。この原因調査の一環として、高速焦電検出器(ELTEC 社製 Model 420)を導入し、FEL 光共振器損失の調査を行ったところ、波長 15 μ m 以長で予期せぬ光 共振器損失の増大が確認され、波長 23 μ m では約 7%の光共振器損失が有る事が分かった。この光共振器損失の増大が確認され、波長 23 μ m では約 7%の光共振器損失が有る事が分かった。この光共振器損失の増大が 13 μ m 以長で顕著にマクロパルスエネルギーが低下する一因となっていると考えられる。しかし、10%程度の光共振器損失は24 μ m 以長で FEL 発振できない理由の決定打とは考えられず、アンジュレータ用真空ダクトが持つ導波管モードの影響やスリッページ増大による FEL ゲインの低下等、他の影響も含めてより詳

細な調査を行う必要があると考えられる。

また、共振器損失低減に向けて、光共振器ミラー直前 の真空ダクトを直径の大きいものと交換するなど、随時、 対策を施しているが、今の所、大きな改善は見られてお らず、最も有効径が小さいアンジュレータ用真空ダクトの 交換や再アラインメントも視野に入れて、検討を進めてい る。

6. まとめ

京都大学中赤外自由電子レーザは現在、当初の目標 波長領域(5~20 µm)を超える 3.5~23 µm での発振が可 能となっている。モニタ系の整備が更に進み、運転条件 が最適化されることで、より大きなマクロパルスエネル ギーを持つ FEL を発生可能となっており、更なる最適化 により、性能向上が可能である事が示唆された。

昨年度の総稼働時間は 388 時間でその内の約 83% がユーザー利用実験に供された。2014 年 7 月より問題 となっていた不良コンデンサの全交換が終了し、その後、 問題なく運転が可能となっている。しかし、今後、安定的 にユーザー利用を推進していく為には、開発初期段階 で導入し、耐用年数を過ぎた機器の交換や更新が必要 となってくると考えられる。

一方、光陰極励起用レーザの整備が進み、光陰極高 周波電子銃を用いた THz 光源開発や中赤外 FEL の性 能向上などの開発が進められている。また、更なる波長 域の拡大を目指した詳細な検討も行われており、今後、 これらの開発が進むことで、より幅広い応用実験に利用 可能な施設となる事が期待される。

参考文献

- H. Zen *et al.*, "Development of IR-FEL Facility for Energy Science in Kyoto University", Infrared Physics and Technology, 51, 2008, pp. 382-385; https://www.sciencedirect.com/science/article/pii/S135 0449507001077
 H. Zen *et al.*, "Development of Level Development of Level Devevlopment of Level Development of Level Development of Level D
- [2] H. Zen *et al.*, "Present Status and Perspectives of Long Wavelength Free Electron Lasers at Kyoto University", Physics Procedia, 84, 2016, pp. 47-53; https://www.sciencedirect.com/science/article/pii/S187 5389216303042
 [3] H. Zen *et al.* "Present Status of Infrared FEL Facility at
- [3] H. Zen *et al.*, "Present Status of Infrared FEL Facility at Kyoto University", Proceedings of FEL2017, 2018, pp. 162-165; http://accelconf.web.cern.ch/AccelConf/fel2017/papers

/mop050.pdf

 M. Kitaura *et al.*, "Visualizing Hidden Electron Trap Levels in Gd₃Al₂Ga₃O₁₂:Ce Crystals Using a Mid-Infrared Free Electron Laser", Applied Physics Letters, 112, 2018, 031112;

https://aip.scitation.org/doi/full/10.1063/1.5008632
[5] M. Kagaya *et al.*, "Mode-Selective Phonon Excitation in Gallium Nitride Using Mid-Infrared Free Electron Laser", Japanese Journal of Applied Physics, 56, 2017, 022701.
http://iopscience.iop.org/article/10.7567/JJAP.56.02270
1/meta

- [6] E. Ageev *et al.*, "Time-resolved detection of structural change in polyethylene films using mid-infrared laser pulses", Applied Physics Letters, 107, 2015, 041904; https://aip.scitation.org/doi/full/10.1063/1.4927666
- [7] K. Yoshida *et al.*, "Experimental Demonstration of Mode-Selective Phonon Excitation of 6H-SiC by a Mid-Infrared

Free Electron Laser with Anti-Stokes Raman Scattering Spectroscopy", Applied Physics Letters, 103, 2013, 182103; https://aip.scitation.org/doi/10.1063/1.4827253

- [8] F. Shishikura *et al.*, "ザリガニの眼は中赤外線が見えるの か", 日大医誌, 75, 2016, pp. 140-141; https://www.jstage.jst.go.jp/article/numa/75/3/75_140 /_article/-char/ja/
- [9] R. Nagai *et al.*, "Performance of the undulator for JAERI FEL project," Nuclear Instruments and Methods in Physics Research A, 358, 1995, pp.403-406; http://www.sciencedirect.com/science/article/pii/0168 900201689002
- [10] S. Suphakul *et al.*, "Generation of Short Bunch Electron Beam from Compact Accelerator for Terahertz Radiation," Proceedings of IPAC2016, 2016, pp.1757-1759; http://accelconf.web.cern.ch/AccelConf/ipac2016/paper s/tupow008.pdf
- [11]S. Suphakul *et al.*, "Beam Dynamics Investigation for the Compact Seeded THz-FEL Amplifier," Energy Procedia, 89, 2016, pp.373-381;

http://www.sciencedirect.com/science/article/pii/S187 6610216300571

- [12] H. Zen *et al.*, "Measurement of Extraction Efficiency of Kyoto University Free Electron Laser", FROL03, in these proceedings.
- [13] Y. Qin *et al.*, "Pulse Duration and Wavelength Stability Measurements of a Midinfrared Free Electron Laser," Optics Letters, Vol. 38, 2013, pp. 1068-1070; https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-7-1068
- [14] H. Zen *et al.*, "Present Status of Free Electron Laser Facility at Kyoto University", Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan, 2017, pp. 1347-1350;

https://www.pasj.jp/web_publish/pasj2017/proceeding s/PDF/FSP0/FSP011.pdf

- [15] S. Krainara *et al.*, "Development of Compact THz Coherent Undulator Radiation Source at Kyoto University", Proceedings of FEL2017, 2018, pp. 158-161; http://accelconf.web.cern.ch/AccelConf/fel2017/papers /mop049.pdf
- [16] S. Krainara *et al.*, "Mitigation of the Space Charge Effect for Improving the Performance of THz-CUR Source", WEP007, in these proceedings.