理研 AVF サイクロトロン運転の現状報告

STATUS REPORT ON OPERATION OF RIKEN AVF CYCLOTRON

小林清志^{#, B}, 大関和貴^A, 後藤彰^A, 大西純一^A), 大城幸光^C, 福澤聖児^B, 濱仲誠^B, 石川盛^B, 小山亮^B, 仲村武志^B, 西田稔^B, 西村誠^B, 柴田順翔^B, 月居憲俊^B, 矢冨一慎^B, 金子健太^B, 小山田和幸^B, 田村匡史^B, 遊佐陽^B, 藤巻正樹^A, 福西暢尚^A, 長谷部裕雄^A, 日暮祥英^A, 今尾浩士^A, 加瀬昌之^A, 上垣外修一^A, 木寺正憲^A, 込山美咲^A, 熊谷桂子^A, 真家武士^A, 長瀬誠^A, 長友傑^A, 中川孝秀^A, 奥野広樹^A, 坂本成彦^A, 須田健嗣^A, 内山暁仁^A, 渡部秀^A, 渡邉環^A, 渡邉裕^A, 山田一成^A, 小高康照^C Kiyoshi Kobayashi^{#, B}, Kazutaka Ozeki^A, Akira Goto^A, Jun-ichi Ohnishi^A, Yukimitsu Oshiro^C, Seiji Fukuzawa^B, Makoto Hamanaka^B, Shigeru Ishikawa^B, Ryo Koyama^B, Takeshi Nakamura^B, Minoru Nishida^B, Makoto Nishimura^B, Junsho Shibata^B, Noritoshi Tsukiori^B, Kazuyoshi Yadomi^B, Kenta Kaneko^B, Kazuyuki Oyamada^B, Masashi Tamura^B, Akira Yusa^B, Masaki Fujimaki^A, Nobuhisa Fukunishi^A, Hiroo Hasebe^A, Yoshihide Higurashi^A, Hiroshi Imao^A, Masayuki Kase^A, Osamu Kamigaito^A, Masanori Kidera^A, Misaki Komiyama^A, Keiko Kumagai^A, Takeshi Maie^A, Kenji Suda^A,

Akito Uchiyama^{A)}, Shu Watanabe^{A)}, Tamaki Watanabe^{A)}, Yutaka Watanabe^{A)}, Kazunari Yamada^{A)}, Yasuteru Kotaka^{C)}

^{A)} RIKEN Nishina Center

^{B)} SHI Accelerator Service Ltd.

^{C)} Center for Nuclear Study, University of Tokyo

Abstract

The RIKEN AVF cyclotron started its operation in 1989. Since then, it has been used not only as an injector of the RIKEN ring cyclotron but also as a supplier of various ion beams directly to users in its standalone operations. In this report, we describe both the operational status and improvement works performed in this year (August 2017-July 2018) aiming at increasing accelerating ability of the AVF cyclotron.

1. はじめに

理研仁科加速器科学研究センターの AVF サイクロトロン(AVF)は、K 値が 70 MeV であり、リングサイクロトロン(RRC)の入射器として1989年に導入されて以来 29 年間稼働し続けている。1991 年からは単独の加速器として低エネルギーの重イオンビームも供給している。以下、前者を「RRC 入射モード」、後者を「AVF 単独モード」と呼ぶ。

RRC 入射モードでは AVF で水素 (H₂)から Rb までを E = 3.78 ~ 7 MeV/u に加速、RRC でさらに 65 ~ 135 MeV/u までエネルギーを高め、各実験コースへ供給し ている。また RI ビームファクトリー (RIBF[1])では RRC で加速されたビームを RIBF へ輸送し、超伝導リングサ イクロトロン (SRC) へ加速し RIBF 実験コースへの供給、 中間段リングサイクロトロン(IRC) へ加速後、理研加速器 施設 (RARF) に逆輸送して生物実験コースへの供給を 行っている。Figure 1 に RIBF の全体図を示す。また、こ れらの加速モードは文献[2]で詳細を報告している。

AVF 単独モードでは、陽子 (M/Q = 1)から ⁸⁶Kr²⁰⁺ (M/Q = 4.3)までの多様な核種のイオンを 3.4 ~ 12.5 MeV/u(陽子は 14 MeV)まで加速し各実験コースへ供 給している。また、3 台の外部入射イオン源(Hyper-ECR、 SC-ECR、PIS)を使い、偏極重陽子、ガス、金属等、加速する粒子によって使い分ける。マシンタイムのスケジュールを組む際、イオン源の開発や準備を考慮しビーム切換えを短時間で円滑に実施できるよう運用する。本稿では1年間(2017年8月から2018年7月まで)の AVF 運転状況を報告する。加速器運転に関連する報告を2.運転実績とし、3.核変換実証試験及び耐久試験、4.イオン源の現状報告、5.AVF ビーム量改善と影響、6.まとめとする。

Figure 1: RIBF Schematic of RIKEN Nishina Center.

[#] kiyoshi@riken.jp

運転実績

2.1 加速実績

2.

この 1 年間で加速したビームについては AVF 単独 モード(AVF standalone)、AVF 1st ビーム(1st beam)およ び RRC 入射モード(Supply to RRC)に区別しそのリスト を Table 1 に示した。

Table 1: Accelerated Beam List (Aug. 2017 - Jul. 2018)

OAVF単独実績あり			●AVF単独1stビーム			ORRC入射		
加速粒子	MeV/u	MHz	加速粒子	MeV/u	MHz	加速粒子	MeV/u	MHz
р	12	21.25	d	11	20.35	12 C 4+	7	16.3
đ	12	21.25	d	14	23	14 N 5+	7	16.3
α	6.5	15.7	α	7.16	16.5	18 O 6+	4.507	13.1
α	7.25	16.58	7 Li 2+	6	15.1	22 Ne 7+	3.97	12.3
α	12.5	21.7	11 B 4+	12.5	17.21	40 Ar 11+	3.75	12
7 Li 2 +	5.6	14.6	11 B 4+	9.1	18.55	40 Ar 11+	5.19	14.05
18 O 6+	6.07	15.18	40 Ar 11+	3.78	12	56 Fe 15+	5.01	13.08
						84 Kr 20+	3.97	12.3
						86 Kr 20+	3.75	12

2.2 運転時間統計

AVF 運転時間を AVF 単独モードと RRC 入射モード とし、AVF での調整時間、実験コース別供給時間、供 給中の故障対応時間にそれぞれ分けて集計した。 1)AVF 単独モード

以下の定義に従って集計した結果を Fig. 2 に示す。

- AVF 調整時間(Tuning of AVF): AVF のメインコイルを 励磁してから AVF 取出し調整を経てスポット調整が完 了するまでの時間。
- ・故障対応時間(Trouble of AVF):供給時間中に発生した AVF が原因の故障やトラブルによる中断時間。
- ・供給時間:スポット調整完了~実験終了までの時間。 各4つの実験コースに分け集計:
- ○C01:AVF 取出し、マシンスタディ等使用。
- ○C03 exp.:RI 製造用の実験コース。
- ○E7A exp.:東京大学原子核科学研究センター(CNS)。 CRIB[3]で原子核、産業連携実験コース。
- ○E7B exp.:RI 製造、産業連携実験コース。

Figure 2: Beam service time of AVF standalone operation.

AVF 単独運転が例年に比べ 1000 時間以上増えた のは、3 項に示す核変換実証試験と C-foil 開発による 耐久試験の影響が大きい。また、RRC 共振器の改造や GARIS-II[4]開発に伴い、AVF 単独実験が組みやす かった事も関連する。2017 年同様に調整時間はこなさ れている。故障時間が少なかったのは、加速器に負担 のない条件で一定期間連続運転していた事が AVF の 安定に繋がったといえる。各実験コースを Fig. 3 に示す。

Figure 3: Overview of AVF cyclotron with 3 ion sources, 3 experimental courses, and beam transport line to RRC.

2)RRC 入射モード

AVF-RRC 加速では AVF から取り出したビームを二 極電磁石 DMC2_3 により 90° 偏向させ RRC コースへ輸 送する。以下の定義に従って集計した結果を Fig. 4 に 示す。

- AVF 調整時間(Tuning of AVF): AVF メインコイル励 磁から取出し調整が完了し RRC へ輸送するまでの時 間。
- ・供給時間:RRC へ輸送してから実験が終了するまでの時間。ただし、RARF実験(RRC-RARF exp.)と RIBF 実験(RRC-RIBF exp.)とで集計を分けた。
- ・故障対応時間(Trouble of AVF):供給時間中に発生した AVF が原因の故障やトラブルによる中断時間。

2017 年の RRC 入射モード、AVF 単独モード両者を 合わせた合計運転時間は昨年の 3650 時間を上回り、 合計 5031 時間になった。

Figure 4: Beam service time of AVF operation as injection of RRC.

- 2.3 運転中のトラブル
- 2.2 項で集計した運転中のトラブルをまとめる。
- ・2017.11.12:AVF-D1 電源トランジスタバンク異常警報 発報。警報ヒューズを交換する。
- ・2017.11.20:E7 放管システム解除時に RSH_CE7 閉め 忘れ異常発生。
- ・2017.11.29:¹¹B⁴⁺ 7.82 MeV/u 立ち上げ時に、コンペン セータモータードライバ故障。予備品が見つからない 為、インフレクター用で代用する。後日ドライバを交換。

- ・2017.12.5:マグネティックチャンネルが外部インター ロックエラーで数回落ちる。後日の調査で複数ある サーマルのうち下側の1個が故障と判明。手が届か ないので一旦ジャンプし後日交換した。
- ・2018.3.8: AVF 系の冷却水ポンプを誤って停止。当日、隣のポンプ修理の為誤って停止してしまった。
- ・2018.4.11:AVF アース板流量系の流量調整。
- ・2018.6.21: RILAC2 冷却水ポンプにベアリング異常。 AVF 系バックアップラインを使用して対処した。
- ・2018.7.18:ビーム切り替え中に真空度が徐々に悪化。 MTを中止する。後日、真空中のPHASE SLIT冷 却配管の破損が判明。今は配管を塞ぎ夏に修理。

3. 核変換実証試験と耐久試験

3.1 C03 核変換実証試験

12 MeV/u に加速した $d \in Target$ に 1 pµA 照射して 行われた C03 の実験は、炭素膜にインプラントした Pd に重陽子を照射して、核変換反応が起きることを実証す るためのものである。これまでに行われた実験(201711-12MT, 201803-04MT)ではコールド試験として安定同位 体の ¹⁰⁵Pd 及び ¹⁰⁸Pd をインプラントした試料で実験を 行った。11 月 8 日に取り出した炭素膜には損傷はな かったが、Ta のビームストッパーの放射化により、表面 の線量が 700 µSv/h 程度であった。¹⁸²Ta の生成が主な 原因と考えビームストッパーをAl へ変更した。7月の MT では強度を 2 倍にし、放射性同位体である ¹⁰⁷Pd をイン プラントした試料を使用して実験を行った。標的チャ ンバーを Fig. 5 に示す。

Figure 5: C03 target chamber.

3.2 C-foil ラダー使用耐久試験

AVF 取り出しビームライン C01a-C01b 間に設置され た、C-foil ラダーを利用して、40Ar¹¹⁺を3.78 MeV/u に加 速し、ラダーに装填した膜にイオンビームを照射して膜 の耐久性を測る試験が行われた。同フォルダーに石英 を入れてスポット及びサイズを調整した。また、照射によ りラダーの膜が破れたり、薄くなったりした事を確認でき るようにビームライン内に検出器を取り付けた。実験後 半ビーム強度を上げるにつれ検出器の感度が落ち壊れ てしまうので、PF-C01b 先端にアルミの板を取り付けてセ ンサーをガードするシャッターを設置した。実験の概念 図をFig.6に示す。

Figure 6: Charge stripper and conceptual chart.

4. イオン源現状報告

4.1 SC-ECR 冷凍機コールドメンテナンス

冷凍機のオーバーホールを 2018 年夏に予定してい たが、超伝導ECRイオン源のカーボンコイル抵抗が960 Ω(4.5 K)から徐々に下がった為、冷凍機のメンテナンス を前倒した。同型の開発機がRIBF棟にあったので冷凍 機を事前にメンテナンスした。これを交換するだけで出 来る、コールドメンテナンスという手法を採用した。冷や したままで交換でき、短期復旧が可能である。作業の様 子をFig. 7とFig. 8 に示す。4 K と 10 K 用のコンプレッ サ内のアドソーバーも寿命の為、本体自体はオーバー ホール品とそのまま入れ替えた。RIBF 棟の搬入スペー スに仮置きしている、SC-ECR(CNS 機体)からメンテナン ス済みの冷凍機を外す。作業中ディスプレーサに空気 が入らないように、He で加圧しながらシリンダに入れる。 その後、冷凍機を偏極イオン源室へもって行き交換した。

Figure 7: SC-ECR upper part work place.

Figure 8: Refrigerator replacement work.

Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan August 7-10, 2018, Nagaoka, Japan

PASJ2018 FSP008

- 3月29日の作業推移を以下に示す。
 - ・10:30 冷凍機(4K, 10K)を取り外す準備を開始。
 - ・11:00 作業終了。偏極イオン源室へ移動して、He バックの取り付け(グローブ付き)架台設置作業開始。
 - ・13:40 4Kコンプレッサ停止、交換作業開始。
 - ・14:00 10 K コンプレッサ停止。
 - 14:30 4 K 冷凍機交換作業終了。
 - 15:00 10 K 冷凍機交換作業開始。
 - ・15:16 断熱真空リジェネ(バルブ開)。
 - ・15:30 作業終了。He にて冷凍機内部置換及び加 圧開始。断熱真空の推移をFig.9に示す。
 - ・16:52 断熱真空の真空度回復。コンプレッサを起動。
 - ・17:00 全作業終了。コイル抵抗を Fig. 10 に示す。

Figure 9: Change in adiabatic vacuum.

Figure 10: Carbon resistance cooling curve.

超伝導コイルの冷凍機を停止して 4.5 K から 32 K まで上昇したが、冷凍機復帰後 4 時間で 4.2 K まで回復。翌日にはミラーコイル磁場を通電し 40 Ar 供給に至る。

4.2 プラズマ光分光法を用いた Hyper-ECR イオン源 のビームチューニング

近年、エミッタンスの改善と並行してプラズマ光を観測 しながらビームチューニングを行なう手法を開発[5]した。 偏向電磁石では分離できない同じ Q/M を持つ多価 チャージの選択には非常に有効な方法である。金属イ オンを生成する際、ロッド法もしくは、るつぼ炉法が用い られる。これまでは偏向電磁石の後ろにある Faraday cup (FC)でビーム電流を測定する事が唯一のモニター法で あったが、金属イオンがうまく出始めたかどうかなどプラ ズマ内の変化に対応できなかった。

しかしプラズマ光分光法を用いることで金属イオンの 生成具合が分かるので、るつぼ炉の最適ポジションが 決定できるようになった。必要なイオン核種の波長の光 強度を増やし、イオン源から引き出すことでプラズマコン ディションが手に取るように分かるようになった。Figure 11 に概念図を示す。

Figure 11: Conceptual image of beam separation by optical monochromator.

Figure 12 に最近検出した ⁵⁶Fe¹⁵⁺ビームをチューニン グした時の Fe XV のモノクロメータとホトマルからの光ス ペクトルを示す。さらに、これらのビーム強度と光強度の 関係を Fig. 13 に示す。

Figure 12: Optical line spectrum of the Hyper-ECR ion source under ⁵⁶Fe¹⁵⁺ beam operation.

Figure 13: Light intensity of Fe XV line spectrum as a function of analyzed 56 Fe ${}^{15+}$ beam intensity.

この図からわかるようにビーム電流と光強度には強い 相関関係がある。今後もこのプラズマ光分光法を用いて さらなるビーム大強度をめざす。

5. AVF ビーム量改善と影響

5.1 AVF 中心領域改造と取り出し

AVFの取り出しエネルギーを上げるため2017年9月 に中心領域を新しい構造に変更した[6]。Figure 14 に新 旧の中心領域を示す。新中心領域は2016年にすでに 加速テストを行っていたが、従来のビームに対して通過 効率が悪かったため、旧構造に戻して運転していた。

Figure 14: Existing and tested geometries of the central region. The shaded area indicates the existing geometry.

その後、入射アクセプタンスなどの計算を行ったが旧 構造に比べて差はなく、通過効率が悪かった理由は調 整時間不足のためであると判断し、再度新構造に変更 した。新構造に変更した際、検証の為に3つの調整 を行った。目的は過去の実績を再現するかを確認す るためであった。

また、2018年3月には通常 Hyper-ECR イオン源から 供給するイオンをSC-ECR イオン源から供給して入射取 出効率を上げる為の試験も行った。Table 2 に試験した ビームと得られた AVF の通過効率を示す。Table 2 で FC-I36、FC-C01 はそれぞれ AVF の入射と取り出し ビームラインにある Faraday cup の読みを表す。通過効 率はほぼ従来通りの値が得られた。また、重陽子につい て最大エネルギーを 12.5 MeV/u から 14 MeV/u に引き 上げる事が出来た。

 Table 2: Summary of Acceleration Test Using Modified

 Central Region

Ion	IonSource	Energy[MeV/u]	RF[MHz]	Н	I36 [uA]	C01[uA]	C01/I36[%]
d	Hyper	12	21.25	2	96	23	24
¹¹ B ⁴⁺	Hyper	9.1	18.55	2	14.4	3.2	22.2
⁸⁶ Kr ²⁰⁺	SC	3.78	12	2	16.3	3.55	21.8
d	SC	12	21.5	2	122	22.7	18.6
d	SC	14	23	2	45	10	22.2

中心領域改造後、d12 MeV/uなど高い加速電圧を必要とするイオンの入射効率は向上した一方、取り出し効率は、これまでの加速パラメターと異なるため調整の仕方によっては悪化する場合もあった。2018 年3月のメンテナンス時に静電デフレクタのセプタム(銅)が溶融していることが判明した。溶融したセプタムの写真をFig. 15に示す。熱負荷を軽減するため、セプタムの入口にV字型の切れ込みを付けているが、その先端部が溶融しているのがわかる。記録データによると、デフレクタにお

けるビームロスが1kWを超えて運転したことが確認できた。この為、以後デフレクタのビームロスは最大500Wとし、それ以上のロスがある状態では運転しない事とした。

Figure 15: Thermal damage of the AVF deflector.

5.2 AVF 真空悪化

2月24日AVF RF No. 2を励振中にコンペンセータ が左右何れかのリミットに近づいた時、AVFの真空が 1.0×10⁻³ Paまで悪化した。しかし、励振が完了してしまう と真空度は元の3×10⁻⁵ Pa台に復旧。リミット位置を調整 してみたが真空悪化症状は止まらなかった。コンペン セータのOリングを疑い、共振器をいったん後退させコ ンペンセータのモータ及びシャフトを引き抜く。

X リングが消耗していたので真空悪化の原因と判明。 他の連結部分に使用している O リングもすべて交換し、 真空引きを開始する。修理後 AVF の真空度は 7.0×10⁻⁵ Pa に達し通常の状態まで回復した。分解作業の様子を Fig. 16 に示す。

Figure 16: AVF compensator repair status.

6. まとめ

この1年間のAVFサイクロトロンの運転状況は順調で 合計運転時間は5031時間に上った。引き続き、AVF入 射効率の改善を進めているが、今後はAVF取り出し効 率の改善が課題である。

参考文献

- [1] Y. Yano NIM B261, (2007) pp. 1009-1013.
- [2] M. Nishimura et al., FSP028, in this proceedings.
- [3] Y. Yanagisawa et al., NIM A539, (2005) pp. 74-83.
- [4] http://www.radiochem.org/pdf/rad_nw34.pdf pp. 12-23.
- [5] H. Muto et al., CNS Annual Report 2013, pp. 59-60.
- [6] J. Ohnishi *et al.*, THP019, in this proceedings.