PASJ2018 FSP002

筑波大学タンデム加速器施設の現状報告

STATUS REPORT OF THE TANDEM ACCELERATOR COMPLEX AT THE UNIVERSITY OF TSUKUBA

笹 公和^{#, A)}, 石井 聡 ^{A)}, 高橋 努 ^{A)}, 田島 義一 ^{A)}, 大和 良広 ^{A)}, 森口 哲朗 ^{A)}, 上殿 明良 ^{A)} Kimikazu Sasa^{#, A)}, Satoshi Ishii^{A)}, Tsutomu Takahashi^{A)}, Yoshikazu Tajima^{A)}, Yoshihiro Yamato^{A)}, Tetsuaki Moriguchi^{A)}, Akira Uedono^{A)} ^{A)} UTTAC, Univ. of Tsukuba

Abstract

The University of Tsukuba's Tandem Accelerator Complex (UTTAC) has maintained two electrostatics accelerators for ion beam applications and the radioisotope utilization equipment. The 6 MV Pelletron tandem accelerator is used for various ion-beam research projects, such as AMS, IBA, microbeam applications, high-energy ion irradiation and nuclear physics. The operating time and the experimental beam time of the 6 MV Pelletron tandem accelerator were 1857 and 1501 hours, respectively, during the total service time in fiscal year 2017. The operating time at the terminal voltage of 6 MV accounted for 52.2% of the all beam time. The research field of the AMS was the largest beam time at a rate of 47.3%. Status of the UTTAC is reported in this paper.

1. はじめに

筑波大学研究基盤総合センター応用加速器部門 (UTTAC)では、6 MV タンデム加速器及び1 MV タンデトロン加速器からなるタンデム加速器施設の維持管理と 学内外との共同利用研究を推進している。2016 年 3 月 より本格的な運用を開始した 6 MV タンデム加速器は、5 台の負イオン源と 12 本のビームラインを有している[1]。 筑波大学タンデム加速器施設の現状と加速器整備及び 研究利用の状況について報告する。

2. 施設現況

2.1 施設概要

筑波大学タンデム加速器施設の概要図を Figure 1 に示す。Figure 2 に 6 MV タンデム加速器の写真を示す。

Figure 1: Schematic view of the UTTAC.

Figure 2: Photograph of the 6 MV Tandem Accelerator.

2.2 6 MV タンデム加速器の運転状況

2017 年度は学内課題 14 件、外部共用課題 4 件(成 果専有課題1件を含む)が採択されており、154日間の マシンタイムを実施した。加速器稼働時間は 1857 時間 であり、ビーム加速器時間は 1501 時間であった。また、 2017 年度の実験課題数は 90 件、利用者数は 636 名で あった。なお、一部のマシンタイムにおいて、He 負イオン 用のRF 荷電変換イオン源の不調・整備のために数日間 がキャンセルとなった。その他、荷電変換フォイルチェン ジャー(80 枚の炭素薄膜を搭載可能)の動作に再現性 がない状況が続き、荷電変換ガスストリッパーも、ガス流 量の調整弁が正しく動作しない状況が確認された。これ らの整備点検を兼ねて、2018年3月中旬より加速タンク 開放による加速器整備作業を実施した。6 MV タンデム 加速器の利用分野としては、原子核実験においてラムシ フト型偏極負イオン源(PIS)からの偏極陽子ビームの生 成及び偏極度の測定に成功している[2]。加速器質量分 析(AMS)では、%Srについて同位体比10-13レベルの検 出に成功した。また、マイクロビームコースでは、¹⁵N-NRA 法や He を用いた透過 ERDA 法により、金属材料

[#] ksasa@tac.tsukuba.ac.jp

中の水素量やその分布測定が進行中である。Figure 3 に 2017 年度における 6 MV タンデム加速器の加速イオン種の割合を示す。Figure 4 には、研究分野別の利用 割合を示す。また、Figure 5 に加速電圧別の利用時間 を示す。

Figure 3: Percentage of Accelerated Ions for the 6 MV Pelletron Tandem Accelerator in FY 2017.

Figure 4: Percentage of Research Fields for the 6 MV Pelletron Tandem Accelerator in FY 2017.

Figure 5: Beam Time Histogram as a Function of the Terminal Voltage for the 6 MV Pelletron Tandem Accelerator in FY 2017.

現在、加速イオン種とエネルギーおよび電荷分布の データ取得が進行中であり、加速可能なエネルギー範 囲の改訂をおこなっている。Table.1に加速電圧6MVで 提供可能な加速イオンのエネルギー範囲を示す。

Table 1: Accelerated	Ion Species	and Their	Energy Rang	jes
at 6 MV				

筑波大タンデムの加速済みイオンとエネルギー(6MV, 2016, 2017年度)															
Charge	Energy	Ion Species													
state	(MeV)	He	Li	В	С	0	F	Si	CI	Ni	Br	Ag	I	W	Au
14	90										Δ	Δ	0		Δ
13	84										0	Δ	0		Δ
12	78									Δ	0	0	0		0
11	72									0	0	0	0	Δ	0
10	66							0	0	0	0	0	0	Δ	0
9	60						0	0	0	0	0	0	0	0	0
8	54					0	0	0	0	0	0	0	0	0	0
7	48					0	0	0	0	0	0	0	0		
6	42					0	0	0	0	0	0	0			
5	36			Δ	0	0	0	0	0	0	0	0			
4	30			0	0	0	0	0	0	0	0				
3	24		0	0	0	0	0	0		0					
2	18	0	0	0	0	0	0								
1	12	0	0	0	0										

6 MV タンデム加速器では、ターミナル電圧 6 MV の 利用割合が 52.2%となっており、³⁶Cl、⁴¹Ca、⁹⁰Sr 等の長 半減期放射性核種の加速器質量分析 (AMS) や原子核 実験、宇宙用素子の照射試験に主に用いられている。ま た、AMS に関する研究が全体の利用時間の 47.3%を占 めている。加速イオン種としては、Cl(36%)、H(19.9%)、 He(9.6%)が多くなっている。H(15%)は、主にラムシフト 型偏極イオン源を用いた偏極陽子ビームの偏極度測定 やマイクロビームコースにおけるビーム収束試験に利用 されている。研究課題としては、AMS に続いて、マイクロ ビーム(21.6%)の利用が多かった。

2.3 1 MV タンデトロン加速器の運転状況

2017年度における1 MV タンデトロン加速器の稼働時間とビーム利用時間は、それぞれ 628.3 時間および 300.7 時間となった。加速イオン種は、H(26.6%)、He (32.3%)、O(25.2%)、Cl(15.9%)のみである。研究課題としては、RBS/ERDA(49.6%)が最も多く、次に検出器等の開発(24.2%)の利用が多かった。Figure 6 に 2017年度に加速したイオン種の割合と Figure 7 に研究分野の利用割合を示す。

Figure 6: Percentage of Accelerated Ions for the 1 MV Tandetron Accelerator in FY 2017.

PASJ2018 FSP002

Figure 7: Percentage of Research Fields for the 1 MV Tandetron Accelerator in FY 2017.

3. まとめ

筑波大学 6 MV タンデム加速器が 2016 年 3 月に稼 働を開始してから 2 年以上が経過した。現在は順調に ビーム供給を続けており、加速可能なイオン種とエネル ギー範囲及び電荷分布のデータ取得を進めている。ラ ムシフト型偏極イオン源 (PIS) からの偏極陽子の生成に 関しては、12 MeV 偏極陽子の偏極度として約 60%を達 成している。また、IBA 装置、宇宙用素子照射装置、マイ クロビーム分析装置、AMS 装置などの整備も終了して、 実験データを順調に提供し始めている。今後は、イオン ビーム学際利用研究、産学連携研究を進展させる予定 である。なお、学外者の施設利用に関しては、外部利用 制度により実施している[3]。

参考文献

- [1] 日本加速器学会誌「加速器」, Vol.13(3), 2016, 154-158.
- [2] Y. Yamato, "EPICS とCSS を用いた偏極イオン源制御シ ステムの開発", Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan, Sapporo, Japan, Aug. 1-3, 2017, pp. 251-254.
- [3] 筑波大学研究基盤総合センター応用加速器部門; https://www.tac.tsukuba.ac.jp/tac/