

ARES空洞用高周波窓可換式入力結合器の大電力試験

HIGH-POWER TEST OF RF INPUT COUPLER WITH A REPLACEABLE WINDOW FOR THE ARES CAVITY

吉野一男 (KEK)

SuperKEKB-RF / ARES Cavity Group (影山達也, 坂井浩, 阿部哲郎, 竹内保直, 榎本瞬)

1. SuperKEKB_ARES空洞用高周波入力結合器(カプラ)の概要

目次

- 2. SuperKEKB用カプラの開発で得た知見(開発の背景)
- 3. 高周波窓可換式カプラ試作初号機 (WRX15)の概要
- 4. WRX15の脱着試験->合格したが、課題も判明
- 5. WRX15の大電力試験->従来機と同等の性能を確認
- 6. まとめ
- 7. 今後の予定

① 1. SuperKEKB_ARES空洞用高周波入力結合器の概要

2. SuperKEKB用カプラの開発で得た知見(開発の背景)

(低誘電損失な高純度アルミナ材に変更)

SuperKEKB 陽電子ダンピングリング(DR) 空洞に取付けた間接冷却型カプラ

KEKB

2. SuperKEKB用カプラの開発で得た知見(開発の背景)

水素炉の熱処理(800 ℃)前後における、窒化 チタン成膜面(40 nm)の抵抗値の変化 水素炉の熱処理(800 ℃)前後における、 窒化チタン成膜面の透過型電子顕微鏡 による断面観察

PASJ 2018

FROM 10

WRX15(Window Replaceable eXperimental model fabricated in JFY 2015)の 分割・組立構造の3D断面

FROM 10

3. 同軸窓可換式試作初号機 (WRX15)の概要

PASJ 2018

FROM 10

K. Yoshino (KEK/Accl) 7

WRX15のリップ溶接部切断作業

FROM 10

4. WRX15の脱着試験

算盤玉組立用の六角穴付ネジ(全6本)の締付 トルク値の確認作業

供試体断面図

4. WRX15の脱着試験

(4-5)供試体のリップ外周の溶接: メーカーからの溶接要領を参考にし、 溶接とリーク試験を何回か繰り返し、補修溶接 にて1組リーク試験に合格

供試体の溶接条件		
溶接機型番	Panasonic TRS150	
初期電流	4A	
溶接電流	9A	
クレーター電流	4A	
パルス有無	無し(直流)	
アルゴンガス流量	10 L/分	
タングステン電極	φ1.2 mm	

リップ部の溶接個所の冷やし金の固定

・極薄板(0.1mm~)溶接に対応した溶接機に 変更して、補修溶接を継続。

	初期電流	4A
	溶接電流	9A
	クレーター電流	4A
~	パルス有無	無し(直
	アルゴンガス流量	10 L/:
	タングステン電極	φ1.2 r
		1
		1
6	6.1	
E	to and	11
. 11/ 60	200	11
11		
		man
11 10		
1 9 1		
	and the second s	and l
Alle	and a second	
	and the second	12
		12
		初期電流 溶接電流 クレーター電流 パルス有無 アルゴンガス流量 タングステン電極

真空試験中の溶接模擬試験用供試体

Super EKB

4. WRX15の脱着試験

PASJ 2018

FROM 10

5. WRX15の大電力試験

FROM 10

5. WRX15の大電力試験

- ・従来機と同等のコンディショニング時間(約70時間)で入力電力の目標800 kWに到達
- ・従来機と同様に、窓の発光は無し(コンディショニング過程での真空圧力の跳ねによる発光を除く) ・コンディショニング終了後、100 kWステップで各種データを測定し、インターロックも無く順調に推移 ・クライストロンが安定動作する最大出力(約900 kW)で、空洞入力電力で最大835 kWを確認

6. まとめ

目的:

方法:

SuperKEKBのARES空洞用カプラの開発過程において、高周波窓への窒 化チタン成膜面が、一体組立の工程である銀ロウ付けの熱処理により悪 影響を受けることが判明した。そこで、銀ロウ付けによる一体組立に依らな いカプラの開発を目指した。

SuperKEKB用カプラと互換性を保ちながら、同軸高周波窓部がボルト・ネジの軸力による機械的な方法で脱着できる高周波窓可換式カプラ (WRX15)を新たに開発し、その大電力試験を行った。

結果: 再組立時のリップ溶接による真空封止に課題を残したが、大電力試験の 結果は、入力電力で最大835kW(連続波)まで投入でき、銀ロウ付けによる 一体化組立された従来機と同等の性能を確認した。

7. 今後の予定

K. Yoshino (KEK/Accl)

15

現在、高周波窓可換式カプラ試作2号機を開発中

●リップ金具の溶接を容易にするため、厚みを0.2 mmから0.4 mmに変更

●アルミナ材料を低誘電損の高純度アルミナに変更し、アルミナの内・外周水路には通 水しない間接冷却方式を採用

●高純度アルミナのカプラの試作機では200kWから窓が発光したが、熱処理(銀ロウ付 け)の影響が無い窒化チタン成膜面が、マルチパクタ放電による発光を抑えることを期待

ご清聴ありがとうございました

Kazuo.yoshino@kek.jp

内導体連結ネジ締付用長尺丸棒の挿入

トルクドライバー (左右両用) BESTOOL-KANON:N20LTDK

FROM 10

テストスタンド(貯蔵空洞)への取付1

Super KEKB

高周波窓の内・外周の水温変化

WRX15の内導体水路の温度上昇が、従来機に比べ約1.8倍上昇している。 これは、従来機にあった高周波窓の中心を通していた内導体冷却用の水路を、分割構造にするため 省いた影響である。

WRX15(入力側カプラ)の窓周囲の水温変化

同軸部側の水温変化

WRX15の同軸部水路の温度上昇が、従来機に比べ約2倍上昇している。 これも、従来機にあった高周波窓の中心を通していた内導体冷却用の水路を、分割構造にするため 省き、外導体からループ部を通して、内導体も冷却している為である。

PASJ 2018

WRX15の分割時の窓全体

WRX15の分割時の窓側拡大

Super KEKB

WRX15の分割時のループ側

Super KEKB

WRX15脱着試験前

同軸管マルチパクタ抑制用微細溝加工

KEKBで運転に使用したアレス空洞 32 台中 2 台において当該マルチパクタ放電により給電電 力を制限せざるを得ない事例が発生したが、微 細溝加工を施したカプラに交換することにより 問題は解消された。

参考文献: T. Abe et al., Phys. Rev. ST Accel. Beams 13, 102001 (2010).

Super

EKB

最大入力電力達成時の計測画面

2017/10/05 11:30:12

Super

KEKB

PASJ 2018

FROM 10

同軸窓が脱着可能なRFコンタクト方法の検討

モリブデンを使った窓水路の腐食1

1台のユニットクーラーシステム(冷却水は純水)に配 管接続された入力結合器および結合空洞減衰器おい て、高周波窓冷却水路内で真空リークを伴う腐食現象 が発生(2001年1月のKEKB運転時)。 Super

ĖKB

モリブデンを使った窓水路の腐食2

純水、Mo、Cuのビーカー実験。Moの影響でpH が下がる。Cu があると、pH は 4~4.5 に落ち着く

ユニットクーラーを用いた再現実験。Mo有りの条件では、冷却水のpHが4~4.5に下がる。

再現実験の結果、水路に接液しているモリブデン治具により、冷却水の pH の低下 と銅表面での析出物発生を引き起こすことが分かった。そして、これらが銅の腐食 現象に影響を与えていると考えられる。

応急対策として、純水に防錆剤(ブルークールS、5%)添加して、pHの低下を抑えた。 以後、運転時の水路の腐食による真空漏れは起きていない。