京大炉中性子発生装置(電子ライナック)の現状 STATUS OF KURRI-LINAC

阿部尚也^{#, A)}, 高橋俊晴^{A)}, 堀 順一^{A)}, 窪田卓見^{A)}, 佐藤紘一^{A)}, 阪本雅昭^{A)}

Naoya Abe^{#, A)}, Toshiharu Takahashi^{A)}, Jun-ichi Hori^{A)}, Takumi Kubota^{A)}, Koichi Sato^{A)}, Masaaki Sakamoto^{A)}, ^{A)} Research Reactor Institute, Kyoto University

Abstract

In the beginning, KURRI-LINAC was driving 2,114.6 hours in 2012. The machine time increased any experiment of the classification of neutron, irradiation and coherent THz radiation. Next, KURRI-LINAC succeeded in the extraction of the low energy weak beam of 10⁵/cm²/sec or less number of electrons. Next, KURRI-LINAC was installed the two button-type beam position monitors among and back of the quadruple magnet. On the other hand, KURRI-LINAC had the trouble at No.2 modulator. The cause was the breakdown of one of the PFN capacitors.

1. はじめに

京大炉中性子発生装置(以下ライナック)は 1965 年に設置された L バンド帯(1300 MHz)の電子ラ イナックである。1968年から全国共同利用設備とし て利用が開始されるようになり、当初は、中性子発 生装置の名の通り、定常的な中性子源である原子炉 と相補的な中性子源としての利用が主であった。近 年では中性子源としての利用に加えて、放射光源や 各種放射線源の利用が行われるようになった。特に、 2008 年より 10MeV 以下の低エネルギー照射の利用 が開始され、2012年からは電子数を抑えた微弱ビー ムの利用を試みるなど実験の多様化が一層進んでい る。1972年のエネルギー増強による本格的な使用か ら 40 年を経過しようとしている古いマシンではあ るが現在も活発な利用が行われている。また、民間 企業との共同研究がここ数年で実施されている他、 学生実験件数が増加するなど、産学連携及び人材育 成においても活躍の場が多くなっている。

2. 利用状況と運転時間

2012 年のライナックの利用件数は 2011 年を 2 件 上回る 64 件で(相乗り 4 件含む)、相乗りを含ま ない件数は昨年に引き続いて過去最高を更新し (Figure 1)、1週に1件を上回る利用ペースを維持 している。増加の背景には中性子・放射光・照射の すべての実験において 2011 年を上回ったことが挙 げられる。実験の件数が増えたため、保守の件数が 減っている。

また、ビーム利用時間の総計は実験件数増加を受けて、2114.6時間と大幅に増加し、2009年以来の2000時間を回復した。利用時間においても各実験すべてで2011年を上回った。

尚、今年度においても昨年度と同等以上の利用件 数が見込まれている。利用件数の増加に対応するた め、実験利用週を前半後半に分けて運転時間を確保 することとなった。

Figure 1: Research Theme V.S Number of Cases and Operation Time.

[#] abe@rri.kyoto-u.ac.jp

加速管暗電流による低エネルギー微弱 ビーム

3.1 背景

共同利用者から、電子数にして 10⁵ 個/cm²/sec 以下 でかつ 1~20 MeV の範囲で選択された直流に近づけ たビームの要望があった。ライナックでは以前より、 2 本の加速管にそれぞれマイクロ波を導入した時に、 電子銃からパルスを出していないにも関わらず、 ビーム位置確認のデマルケスト蛍光板が光ることが 確認されており、このビームが利用可能性の検証を 2012 年末から 2013 年始にかけて行った。

3.2 検証

まず、ビームの実態を把握するために、初期条件 として電子銃高圧(-75kV)ON、電子銃引き出しパ ルス無し、No.1、No.2加速管にそれぞれ通常利用と 同強度のマイクロ波を 10Hz で導入したところ、蛍 光板が発光した。電子銃からの暗電流を疑い、電子 銃高圧を OFF にしても、蛍光板の見た目の光量は変 わらなかった。加えて、電子銃直下のゲートバルブ を閉じて確認しても、蛍光板の光量に変化が見られ なかったため、電子銃からの暗電流の影響はほとん どないと判断し、マイクロ波導入時の暗電流がビー ムの主成分であると断定した。

次に、加速管からの影響を確認するために、No.1 加速管または No.2 加速管のみにマイクロ波を導入 した。結果、No.1 加速管だけのマイクロ波導入でも 蛍光板は発光したが、見た目の光量は落ちていた。 また、No.2 加速管のみのマイクロ波導入では蛍光板 は発光しなかったが、No.1 のみでの光量の変化から No.2 からの暗電流も利用できると判断した。

3.3 ビームエネルギー測定

ビームエネルギー測定には、ターゲット室にある ベンディングマグネット(マグネット電流 1A = 1MeV に設計)を使用することで、ビームを右 45° 方向に曲げ、その延長線上で電離箱(ALOCA ICS 323)をターゲットとして測定を行った(Figure 2)。 結果は、No.1 加速管からのビームでは 8 MeV 付 近から線量上昇が確認され、ピークは 17~18 MeV で あった。また、マイクロ波のパワーを減らしても ピークは 10 数 MeV であまり変化がなかった。

No.2 加速管からのビームでは 2 MeV 付近から線 量上昇が確認され、ピークは 8~10 MeV であり、18 MeV 近辺まで線量上昇が確認された。また、マイク ロ波のパワーを変動させることでエネルギーの上下 限が変更できることが確認された。今回の要望では 広いエネルギー幅が必要であるため、No.2 加速管の みを利用したビームを追求することにした。また、 電子であることの確認のために、電離箱との間に永 久磁石(磁束密度 0.162 Tesra、有効距離約 7cm)を 置いて測定したところ、線量上昇が見られなくなっ たため、電子線であると断定した(Figure 3)。

Figure 2: Measurement of the electron beam energy.

3.4 電子数測定

発生している電子数を推定するためにイメージン グプレートによる測定を各エネルギーにおいて行っ た。イメージングプレートには BAS-IP-SR2040E (GE ヘルスケア)を、読み取り器には BAS-2500 (富士フィルム)を使用した。イメージングプレー トで測定される数値 (PSL 値)から電子数への変換 は近畿大高橋ら^[1]が導出した較正値を利用した。

ビーム条件は繰り返し 100Hz、照射時間は 10 分 とし、エネルギー測定時と同様の条件で延長線上に 鉛コリメータ(内径約 2.2cm)を置き、コリメータ に密着させる形でイメージングプレートを設置した。 /読み取り画像例を Figure 4 に示す。結果はエネル ギー別で $10^2 \sim 10^4$ 個/cm²/sec となり、条件を満たし たビームであることが確認された。

Figure 4: Image of BAS IP-SR2040E by BAS-2500 at 10 MeV. Electron numbers of circle $= 1.8 \times 10^{3}$ /cm²/sec.

4. ボタン電極配管挿入

4.1 背景

2011年のQマグネット追加作業⁽²⁾の継続として、 簡便なビーム位置調整を可能にするビーム位置の測 定を目的に、産総研・清紀弘氏の支援の下実施され た。

4.2 挿入作業

ボタン電極配管の挿入は 2012 年 12 月に実施した。 設置箇所だが、本来 Q マグネット前後に設置すべき であるが、スペースの関係上 Q マグネットの間と後 方の 2 箇所に設置した(Figure 5)。

Figure 5: Button-type beam monitors.

4.3 測定

2013年1月の実験時に測定を行ったが、測定装置 が用意できず後方の一箇所のみの測定となった。結 果は、ビームが中央にあると思われるときにパルス 波高が最大となった。今後は測定装置の充実を図っ ていく予定である。

- 5. トラブル
- 5.1 No.2 モデュレータ

2013 年 3 月の Long モード運転中にモデュレータ 過電流によるマシン停止が発生した。再起動を試み るも再度過電流が発生したため現場確認を行うと、 PFN ラック上部より乾いた異音が発生していること が確認された。発光は認められなかった。PFN 上部 を使用しない Short モードで運転を試みると正常動 作した。このため、PFN 上部に使われているコンデ ンサの内部で放電が発生していると推定した。PFN 上部のコンデンサを注視すると異音が聞こえる付近 のコンデンサが 1 つ若干大きめに膨らんでいた (Figure 6)。このコンデンサを交換すると Long モードでも正常起動可能になったため、交換したコ ンデンサが原因であることが断定され、対応完了し た。故障したコンデンサは 30 年近く使用しており 経年劣化による寿命が原因と思われる。他のコンデ ンサも同様に使用しており、今後の故障が予想され るため、早期の全面更新が急務となる。

Figure 6: PFN capacitors. Left: damaged, Right: new.

参考文献

- [1] T.Takahashi, et al., "高速電子に対するイメージングプ レートの感度較正"応用物理学会分科会誌 放射線 Ionizing Radiation Vol.28, No.2, Apr. 2002
- [2] N.Abe, et al., "京大炉中性子発生装置 (電子ライナック)の現状", Proceedings of the 9th annual meeting of aaparticle accelerator society of Japan, Osaka, Aug. 8-11, 2012