[2 a - 8]

DEVELOPMENT OF 10 MeV 25KW CLASS STERILIZATION LINAC SYSTEM

Y. Kamino^{*}, N.Hisanaga , Y.Itaya

Mitsubishi Heavy Industries, Ltd. Nagoya Aerospace Systems 10 Oye-Cho Minato-ku Nagoya,455 Japan

ABSTRACT

A 10MeV 25KW class electron LINAC was developed for sterilization of medical devices. The LINAC composed of a standing wave type single cavity prebuncher and a 2m electro-plated traveling wave guide uses a 5MW 2856MHz pulse klystron as an RF source and provides 25KW beam power at the Ti alloy beam window stably after the energy analyzing magnet with plus-minus 1 MeV energy window. The practical maximum beam power reached 29KW.The control of the LINAC is fully automated and realized the "One-Button Operation" which is valuable for easy operationas a plant system. 2 systems have been delivered and are being operated stably.

10MeV 25KW級電子滅菌用リニアックシステムの開発

1. はじめに

医療器具の滅菌用として10MeV20KW級のビー ム出力を有するSバンド電子リニアックの工業適 用が始まってから約10年になり、国外メーカ数 社が同クラスのリニアックシステムを供給してい るが、20KWを越える大出力域で安定に稼働でき るシステムは皆無に近い。一方、滅菌処理量の増 大に伴い、性能上の余裕の点から25KW以上のビ ーム出力が安定に得られる機種の開発が望まれて いた。当社では、1994年に全自動化電子滅菌工場 設備を株式会社ホギメディカル殿より受注し、そ の主要設備として定格ビーム出力10MeV25KWの 電子滅菌リニアックシステムの開発・納入に成功 したので報告する。

2. 設計方針

従来の10MeV20KW級のSバンド電子リニアッ クの大出力域での不安定は、厳しい熱負荷による 加速管及びそれ以降のビーム輸送系の動作不良が 主要な原因であった。小型のSバンド定在波型加 速管内で20KW~30KWのRFパワーが消費されて いるケースもあり、更にこれに加速管内でのビー ム損失による熱負荷が加わって、不均一でしかも 大きな加速空洞の歪みが発生して動作不安定が発 生していた。当社システムでは、加速管を含めて あらゆる部分のRFロス及びビームロスを極小と し、熱負荷を極限まで減少して大出力時のシステ ムの安定性を確保することを設計方針とした。

3. システムの概要及び主要性能

本リニアックシステムの概略構成を図ー1に示 す。また、システムブロック図を図ー2に示す。

主要性能・運転諸元の実績値は以下の通りである.

Beam Energy :10.0MeV
variable from 9 to 11MeV
Energy Spread : 1MeV (90% beam current)
Beam Power at : 25KW (guaranty) PPS=550Hz
beam window 29KW (actual) PPS=630Hz
PPS : 700Hz (Max)
Beam pulse width : 13.5 micro sec
Beam current : 340mA peak
Frequency : 2856MHz
Klystron power : 5MW peak
Irradiation Surface : 60cm from the beam window
Beam spot size : 16cm diameter
on the irradiation surface
Beam Scan Width : 30cm to 80 cm variable
Scan Frequency : 5.1Hz (Typical)
Scan Uniformity : plus minus 2%

4. 加速管

加速管としては長さ2mのCG型電鋳管を使用し た。空洞数は60であり、最初の8空洞はテーパ 型バンチャ空洞で以降の52空洞がCG型のレギュ ラ空洞である。ロードライン解析により、4.8MW のRF入力に対して設計電流値360mAで10MeVが 最大変換効率の点で得られるよう減衰定数は0.38 Neperとした。ビームのエネルギ幅を最小としエネ ルギ変換効率を最大とするためには、加速位相ク レストにバンチが乗るようにする必要があるが、 電子の位相トレース解析を用いてテーパ型バン チャ空洞の諸元(ディスク間隔及びビームホール 径)を最適化しフェーズリミットが-90degとなる ように設計した。エネルギ変換効率は実測値で 70%程度得られており、25KWの定格ビーム出力 の場合の加速管の熱負荷は10KW程度にとどまっ ている。加速管は水冷で冷却するが、適応冷却方 式(特許出願中)により、重いビームローディン グに伴う熱負荷の不均一を補正して、大出力時で も正確な位相特性が確保できるようにしている。

5. インジェクタ部 電子銃はカソードとしてCPI EIMAC Y-845を 使用したTRIODE GUNであり、ビームダイナミク ス改善のため工業用リニアックとしては高い140 KVの加速電圧とした。電子銃の電極形状は、E-GUNにより、運用電流の400mAで最適の光学特性 が得られるように最適化した。出力ビーム電流は FEED-BACK制御ループを設けて安定化して、電 流安定度は長期間の運転時にも±1%以下が達成で きており、クライストロン出力の安定化とともに ビームエネルギの安定性の確保に役立っている。

電子銃の後段にノーズリエントラント型の1空 洞定在波型プリバンチャを装備している。このプ リバンチャの給電は大幅なオーバカップル(β= 30)となるように設計しており、ビームローディン グの影響が無く、安定してインジェクションが行 える。

6. ビームダイナミクス

ビームダイナミクスの最適化設計はPARMELA により行った。プリバンチャノ加速管でのビーム 透過率は計算値90.2%に対して実測値90%で設 計通り良好な特性が達成できている。偏向マグ ネットのエネルギスリット部に蛍光板を挿入して モニタしたエネルギ幅特性を図ー3に示す。ほぼ 全電流が10MeV±0.5MeV内に入っており、該当 位置での分析無しの状態でビーム径がほぼ15ゅで ある点を考慮すれば半値幅は0.4MeV以下と思わ れ、工業用リニアックとしては極めて良好な特性 である。なお本特性は、電子銃のトリガタイミン グの調整によりINITIAL BEAM LOADING EFFECT を補正した後に測定したものである。電子銃出力 電流値400mAに対して加速管出力電流は360mA エネルギ分析後のビーム電流は340mAで総合的 なビーム透過効率は85%にも達しており、低ビー ムロスのシステムとなっている。

本システムはビームローディングが重く、 Reactive Phase Distortionが発生する。これに ついては、加速RF周波数を約200KHz上昇させる ことにより補正している。[1]

7. Beam Break Up(BBU)検討

本リニアックは、従来のシステムに比べ13.5^µ secとパルス幅が長い他、ビーム電流も400mAと 比較的大きく、ビームエネルギの低い加速管上流 部でRegenerative BBU(R-BBU)が発生する恐れ があった。このため、バンチャ空洞部及びレギュ ラ部の計15空洞分をMAFIAによりモデル化・解析 して、BBUの原因となるダイポールモードを全て 検討した。該当部分には10個のダイポールモード が存在する。このうちほぼ光速のビームと結合す るπモードで、結合領域で負の群速度を持ってい て、相互作用領域が長くシャントインピーダンス の高い3種のHEM11モード(Mode No.3, No.4, No. 5)を選定し、このそれぞれについてP.B.Wilson [2][3]の方法によりR-BBU開始電流を求めた結果 は以下の通りである。概算値ではあるが、400mA の運転に対して十分なマージンが得られている。

Mode	Dipole Mode Freq.	Starting Current
No.3	4213.2MHz	3.25 A
No.4	4226.8MHz	2.10 A
No.5	4234.8MHz	3.09 A

8. クライストロンモジュレータ

クライストロンモジュレータは、通常のライン タイプモジュレータである。平均出力が大きいた め、サイラトロンとしては現在入手可能な範囲で 最大の平均電流容量を持つEEV社CX-1720MNを 使用している。また、PPSが高いためコマンド充 電方式を採用してサイラトロンのリカバリタイム を確実に確保するとともに、PFNキャパシタに高 電圧がかかる時間を最短化して長寿命が得られる ように配慮している。パルストランスの2次側に はクライストロン巻線とともに電子銃用の高圧巻 線も備えて、電子銃に140KVの高圧パルスを供給 している。モジュレータは、PFN部及び放電部ま でを含む電源盤部とパルストランス及びクライス トロンから成るクライストロンタンク部に分かれ る。このうちクライストロンタンク部は放射線遮 蔽壁内に収納し、管理区域外にある電源盤部との 間を同軸高圧パルスケーブルで接続している。ク ライストロンとしては仏トムソン社のTH-2154 を使用している。

9. システム制御

本システムは、工業用のPLC(Programmable Logic Contoroller)により、加速器起動シーケン スから運転中のビームエネルギ、ビームパワーの 安定化、運転諸元のモニタ及びインタロック動 作、停止シーケンス、異常発生時の再起動シーケ ンスまで全てを全自動化している。加速器起動及 び停止はボタン1個の操作で完了し、スタンバイ 状態から定格出力まで約1分で到達する。モニタ 機能は加速器制御盤上のLCDタッチセンスパネル に集約されており、グラフィクス画面上で対話式 にリニアックの動作状況を全てモニタすることが できる。更にリニアックシステムは上位の工場統 合管理システムに接続されており、統合監視室の EWS画面上で完全なリモート運転ができる。

10. 結論

国産初で世界でも最高出力のSバンド電子滅菌 リニアックシステムは、高度に統合化された全自 動滅菌工場システムの主要構成品として2台が納 入され、ホギ社筑波滅菌センタで順調に稼働中で ある。

11. 謝辞

本開発に当たってBBU解析を中心とした理論面 でSLACのDr.P.B.Wilson, Dr.J.W.Wangに支援を 頂いた。日本高周波(株)の篠原己抜社長、馬場斉 氏を始めとする方々にはクライストロンモジュレータ及び立体 回路の開発で多大な支援を頂いた。また、株式会 社ホギメディカル殿には、本リニアックの開発の 機会を与えて頂くとともに10MeV電子滅菌の国内 における先駆者として種々御指導を頂いた。ここ に厚くお礼を申し上げます。

12. 参考文献

- S.Arai et al. "Detuning effect in a traveling-wave accelerator sturucture due to beam loading", Particle Accelerators, 1984 vol.15, pp.99 - 114
- [2] P.B.Wilson, HEPL Report 297, June, 1963
- [3] P.M.Lapostolle & A.L.Septier,"Linear Accelerators", North -Holland Pub. Company ,1970,pp.190-192

図ー1 リニアックシステムの概略構成図

図-3 エネルギ輻特性

Energy analyzed beam profile at the energy slit position on Desmarquest AF995R plate.