
Proceedings of the 20th Linear Accelerator Meeting in Japan (September 6—8,1995, Osaka, Japan)

© - 2 5

Application of an Object-Oriented Analysis for the PF Linac
Control System Development

Mejuev L, A be I. and Nakahara K.

N ational Laboratory for High Energy Physics (KEK), Oho 1-1, Tsukuba, Ibaraki 305, Japan

Abstract
An O bject-O riented Analysis fo r developing the P F Linac control system has been carried

out. We used the Rumbaugh m ethod fo r making a logical model o f the Linac with its subsystems.
A generic system class which provides aggregation relations support， value control and
operations is defined. An operation concept which provides standard operations support is
introduced. A discussion concerning object-oriented decomposition o f complex system s is also
presented.

1 . Introduction
Software development for a modern

accelerator control system requires highly
productive software engineering tools
which can significantly decrease the
development and maintenance costs. In line
with our group’s intention to use object-
oriented technology for all phases o f
software development, this paper describes
a new design concept for creating a logical
model o f the accelerator in the analysis
phase. The Rumbaugh OM T m ethod was
introduced using the ObjectMaker tool [1].

The Object M odeling Technique consists
o f three main models: Object M odel,
Dynam ic M odel and Functional M odel.
The Object M odel describes the real world
or problem dom ain in terms o f static
objects and the relationships between
objects. The Dynam ic M odel describes state
transitions and events which cause them.
The Functional M odel describes methods
for the Object M odel or events for the
Dynam ic M odel. The Object M odel is the
most important o f the three models. The
system should be built around the Object
M odel because this model closely
corresponds to the problem domain. In this
paper we emphasize the Object M odel
development.

W hile defining the Object M odel o f the
Linac several ideas must be taken into

consideration. The Object M odel must be
adequate to reflect the complex structure o f
the accelerator, it must also hide internal
details concerning different subsystems
when necessary. A lso, we must create a
standard m ethodology for operating
heterogeneous accelerator subsystems.
Thus, while creating the object-oriented
model it has been decided to place all
com m on features o f an abstract accelerator
subsystem object at the top class o f the
system hierarchy. Those common features
are considered to be: aggregation relations,
values and operations.

Smalltalk language provides a unique
possibility to develop a domain model o f
the accelerator system separately, without
paying any attention to the user interface
objects. We can realize this by using its
MVC (model-view-controller) concept. In
the first stage, we can develop only a system
model, and then connect it to the view and
controller representing the user interface.
The connection is possible owing to the
generic Smalltalk dependencies technique.
In our case, the model has a set o f views as
its dependents, so that views will be notified
about any model changes [2]. In this paper
we consider the first stage: system model
development.

2. Design concept
In accordance with our approach, in the

initial stage all system classes must be
presented in Rumbaugh notation using
ObjectMaker tool. In other words, at first
we create a dom ain m odel o f the
accelerator.

The main classes o f the Object M odel are
explained below.

operation; only in this case we can proceed.
Thus, an operation concept is created to
guarantee that only acceptable operations
can be applied to a Control Object instance.
A n Operation object contains an operation
name as well as a reference to a Smalltalk
m ethod which implements the action. In
our m odel we are using qualified
association to connect the operation to the

A ControlObject is a generic system
object. We derive from this class all
important parts o f the Object M odel.
ControlObject properties are :
* supported operations
* a set o f values
* dependent components

Operation is an instance o f the
O bjectOperation class (abstract class) with
the possibility to derive for example control
operation class, test operation class and so
on. Every action in the system is
represented as a set o f operations. When
some operation is applied to the object, we
first check whether it is an available

object. Qualified association allows objects
to refer to operations by name.

This concept also provides the possibility
to show to the control system user a list o f
available operations for selected object. The
object o f interest could be selected using a
graphical representation o f an accelerator
system.

Value is a generic datum holder, an
instance o f the O bject Value class. Every
parameter managed by the system is
represented as an Object Value instance.

Value object features are:
* Standard “setValue:”， “getValue” and

“polling” messages support for any
value type.

* The possibility exists to either control
the value by polling or to create a
process which can manage that value. In
the case o f polling there is the possibility
to set a polling priority.

* Condition and action which is invoked if
the condition is valid. During the
scanning process the condition is used
to determine whether it is necessary to
do anything or not. The condition
contains an expression which includes a
value magnitude and is evaluated by the
scanning process.

To express hierarchy relations we inherit
the ControlObject class from the standard
L ist class in the Smalltalk environment.
However, several operations, such as
copying and comparing must be
overridden. We also found it convenient to
use Smalltalk dependencies (mentioned
above) to provide notification o f a high-
level object about the state o f its
components.

The Accelerator is the main root object.
The A ccelerator contains a set o f
subsystems, and description o f the spatial
distribution o f low-level objects. That
includes the data structure representing the
accelerating sections, and for each section
objects located there. A lso, as for any
instance o f the ControlObject class we can
define values and operations; in this case
those which are important for the whole
accelerator are used.

Subsystem: superclass representing
accelerator subsystems com m onality. It is
possible to make an inheritance for creating
an r f system, vacuum system and others. A
subsystem contains a set o f low-level
subsystem objects. It can also contain a set
o f global subsystem values and operations.

The Subsystem O bject class is derived
from the ControlObject class; also, however,

the location o f this object in the accelerator
structure is added. A Subsystem Object
represents a very elementary object in the
system. In the aggregation hierarchy it is a
part o f either the Subsystem or Accelerator
class instances.

A s mentioned above, system control is
achieved by executing actions which are
instances o f the Object Operation class.
A ctions can take control in two ways. The
first is when the scanning process calculates
the value condition; if it is valid proper
action is executed. The second one is
external action originating from a control
system user w ho can directly execute any
actions for any system object.
3. Conclusion

The Object M odel described above is
intended to be a domain model for the
future control system. The Rumbaugh
m ethod allows us to develop a standard
approach for representing an accelerator in
terms o f the Object M odel. Further, this
model must be supplied with a user
interface and a core control program. For
this purpose Smalltalk language (Visual
Works) is now under consideration. Such
features as dynamic type identification,
exception handling as well as the pure
object-oriented nature o f Smalltalk will
stipulate this concept realization.
4. References
[1] Object-oriented modeling and design;
James Rumbaugh [et al.] Englewood Cliffs,
N . J . : Prentice H a l l，c 1991
[2] A n Introduction to Object-Oriented
Programming and Smalltalk; Lewis J.
Pinson, Richard S. Wiener University o f
Colorado at Colorado Springs, Addison-
Wesley, c 1988

