金属磁性体 FT3L を用いた高インピーダンス空洞

大森 千広*

High Impedance RF Cavity using a Magnetic Alloy, FT3L

KEK*

Chihiro OHMORI*

Abstract

The Magnetic Alloy loaded RF cavity using the material FT3L is expected to be an excellent technology to improve the performance of proton accelerators around the world. J-PARC is planning to replace the existing RF cavities by FT3L cavities. CERN is also planning to employ the FT3L cavities to replace old ferrite cavities in the PS booster ring for the LIU (LHC Injector Upgrade) project. The FT3L has better characteristics for RF cavity performance than ordinary magnetic alloy and ferrite materials. On the behalf of the J-PARC Ring RF group, I describe the history of developments, principle of cavity, characteristics of FT3L material and design of cavities.

1. はじめに

J-PARC では現在 MLF (Materials and Life science experimental Facility) とニュートリノ施設に約200 kW のビームの供給が行われている^{1,2)}. J-PARC MR (Main Ring)ではビーム強度増強のため、バンチあたりの強 度を増やすと同時に繰り返しを速くすることで、ユー ザーに供給する時間当たりの粒子数を増やす準備をす すめている. これにより現状では運転開始当初3.56秒 であった MR の繰り返しは1秒短縮され, 2.56 秒周期 で運転している.そして,更なるビーム増強に向け, 加速器の改良がおこなわれようとしている. 日立金属 (株)の金属磁性体 FT3L を用いた新しい金属磁性体空 洞^{3,4)}は陽子加速器のこの性能向上の切り札として期 待されている (図1). ここで FT3L とはナノ結晶軟磁 性材料の一種で、結晶化過程において磁場をかけるこ とにより, ナノメーターサイズの結晶の磁化容易軸が 揃った状態となった材料である.

高繰り返しを実現するためには電磁石電源の増強と 同時に高周波電圧を増やすことが必要となる.しかし ながら,高周波空洞のためのスペースは現実には限ら れており,限られた場所で必要な電圧を得る必要があ る.そこで必要となるのはより加速勾配を高くする技 術である.この点でFT3L空洞は従来の金属磁性体 (FT3M)に比べ約2倍高周波損失が少ない.このため, より少ない高周波パワーで必要な加速電圧を得ること ができると同時に磁性体の量を減らすことを可能にし,

 図1 J-PARCハドロンホールにて、FM 電磁石を借り て行われた加速器用大型 FT3L コア製造試験で 高インピーダンスコアの製造に成功した J-PARC リング RF グループ. KEK プレスリリース 2011 年8月3日 http://legacy.kek.jp/ja/news/press/2011/080315/

* 高エネルギー加速器研究機構 KEK, High Energy Accelerator Research Organization (E-mail: chihiro.ohmori@kek.jp) より高い加速勾配を実現することができる. この FT3L 空洞は J-PARC のみでなく CERN の LHC のルミ ノシティ増強に向けた入射器チェーンのアップグレー ドにも使用を検討している^{5.6}.

本稿では、陽子シンクロトロン用加速空洞の歴史と 加速電圧勾配を制限していた磁性材料について説明し たのち、主にこれまでに筆者ら J-PARC リング RF グ ループが行ってきた研究について、金属磁性体空洞の 利点とさらにその応用例として J-PARC と CERN の空 洞について述べる。そして、最近注目され始めた FT3L 空洞開発の現状を紹介したい。

2. 研究の歴史(フェライト空洞)

まずこの章では,最初に陽子(またはイオン)の加速 器ではなぜ加速空洞に磁性体が使われるか説明したい. そして,従来のフェライト空洞の仕組みついて述べる.

図2は電子, 陽子とβの関係を示したグラフである. この図からわかるように電子の加速空洞では10 MeV 程度を超えると電子の速度はほぼ光速となり, 一定周 波数の空洞によって加速することができる.一方, 陽 子では20 GeV 程度以下ではエネルギーに応じて加速 周波数を変えていくことが求められる.約20 GeV 以 上ではその必要はなくなる.このため,同じ100 GeV 超の加速器でも入射エネルギーが8 GeV の FNAL Main Injector ではフェライトを使った空洞が使われる が,入射エネルギーが26 GeV の CERN の SPS では固 定周波数の空洞が使われている.

では従来の空洞ではどのように加速周波数に高周波 周波数を同期させているのであろうか. 図3にフェラ イト空洞の模式図を示した.加速器のフェライトとし ては主にニッケル亜鉛系が使われる.フェライトは直 流電流を流すことで飽和し,透磁率が変化する.この 特性を利用して,フェライトにバイアス電流を流すこ とで空洞のインダクタンスを変化させ,加速ギャップ

図2 電子,陽子のエネルギーと速度(β)の関係図. 電子では容易に光速近くまで加速されるが,陽 子などでは数十 GeV まで加速しなければなら ない.この違いが電子とその他の粒子の加速方 式に大きな違いをもたらしている.

付近に配置されたコンデンサーとの間の共振周波数を 変化させることができる. 文献 7) は 1992 年の CERN 加速器スクールのものだが,フェライトリングにどの ようにバイアス電流を流すかという点で,いくつかの 例が紹介され,目的にあったさまざまな工夫がなされ ていることがわかる.

さて、ここでフェライトの磁性体としての特性を見 てみよう、フェライトは数百程度の比透磁率をもつ材 料であり^{7,8)}、トロイダル形状のものが空洞内部に設置 され、加速ギャップ付近の静電容量との間で並列共振 回路となるように、インダクタンスとして用いられて いる.この場合、シャント抵抗値は磁性材料の透磁率 と*Q*値と周波数の積(*µQf*値)に形状因子をかけたも ので得られる、フェライトの*Q*値は100程度であり、 *µQf*積として10¹⁰程度となる、ところが、この*Q*値 は高周波電圧振幅すなわちフェライトコアの中の高周 波磁場に依存する性質がある、これはフェライトの透 磁率が1 kG 程度で飽和するため、高周波磁場にして 100 Gを超えたあたりから、特性が劣化することによ る(図4参照).この特性がフェライト空洞の加速勾配 を制限することとなる.

3. 金属磁性体空洞

金属磁性体空洞を最初にビーム加速に使用したのはフ ランスの Saclay 研究所の MIMAS 加速器である (図 5)¹⁰. これにはアモルファスコアが利用されている. この空 洞は加速に必要な広帯域を実現するためにフェライト コアに変えてアモルファスを使用したものである. 一 方,バイアス線や冷却銅板をつかった冷却などフェラ イト空洞の方式をそのまま使用している. 金属磁性体 (Magnetic Alloy) または金属磁性体空洞 (Magnetic Alloy Cavity)の名称はこの Saclay 研究所の呼び名を 踏襲したものである.

大強度加速器のための金属磁性体空洞の開発は1995

図3 フェライト空洞の模式図.フェライトにバイア ス線を8の字に巻くことにより、高周波の漏え いを防ぎながら、透磁率を変化させることがで きる^{7.8}.バイアス電流の流れを→で示している.

— 73 —

図4 フェライトと金属磁性体コアの特性の違い⁹⁾。 特徴の異なるフェライトを2種類しめした。フェ ライトでは両者とも磁性体内部の高周波磁場 B_{rf} が増加すると特性 μQf 値が低下する。これに対 し、金属磁性体コアでは 0.1T の B_{rf} でも変化し ていない。ここで $B_{rf} と \mu Qf$ はそれぞれ高周波 電圧とシャント抵抗値をコアの形状による係数 で規格化しものであり、形状に依存しない磁性 体特性の評価に用いられている。

年旧東京大学原子核研究所の将来計画のための R&D として開始した.当時は陽子のための空洞としてはフェ ライトが主流であったが高電圧での材質としての安定 度は大強度加速に必要な速い繰り返し加速器を実現す る上で魅力的であり,金属磁性体空洞の研究を開始し た.金属磁性体とフェライトには材料として,いくつ かの大きな違いがある.それは,

○飽和磁束密度がフェライトに比べ一桁大きいこと (このため空洞により高い電圧を出力しても特性が劣化 しない.これを図4に示す).

○透磁率の実数項と虚数項の割合が、フェライトで は実数項が大きいのに対し、金属磁性体では同じオー ダーであること.これにより、フェライト空洞では*Q* 値が100程度あるのに対し、金属磁性体空洞では*Q*値 は1程度と小さい.

○キュリー点がフェライトでは 100 度から 200 度な のに対し,金属磁性体では 570 度と高い点.

○フェライトの中の高周波ロスはヒステリシス損で あるが、金属磁性体空洞ではヒステリシス損と渦電流 損の両者があること.

この金属磁性体で作った大型リングコア(直径 80 cm と 85 cm)を防錆加工し,直接冷却する方式を確立する ことで,高い加速勾配を得ることができた⁹.**図6**は 陽子加速器に用いられている高周波加速空洞の加速勾 配の比較である.20 cmを超える大きなビームパイプ径

図5 世界最初の金属磁性体空洞. VITROVAC® (ア モルファス)を用いた空洞である.

図6 フェライト空洞と金属磁性体空洞の加速電圧勾 配の比較.金属磁性体空洞を用いることにより, J-PARC では高い電圧勾配を実現し, RCS を小 型化することに結び付いた.また,さらなる MR 増強のため,加速勾配をさらに向上できる 空洞の開発が進んでいる.

が必要な J-PARC の RCS (Rapid Cycling Synchrotron) では従来のフェライト空洞 (ISIS) に比べ2倍を超え る加速勾配を金属磁性体空洞により実現している¹¹⁾. 従来のフェライト空洞で加速器を設計した場合 RCS の 周長は 400 m を優に超えるが,この技術により 300 m 台に小型化できた.

4. 実際の金属磁性体空洞

前述のようにフェライトと金属磁性体の違いの一つ

は帯域である. 金属磁性体は前述のように Q 値が低い ためフェライト空洞とは全く異なる加速空洞の制御が 可能となる. すなわち, バイアスを用いた同調回路を 使わずに陽子やイオンの加速に必要な帯域をカバーで きるということである. この点の実証のために 1998 年 に幸運にも放射線医学総合研究所の協力を得て HIMAC に空洞を設置し, さまざまな実証試験をおこなうこと ができ, また AGS での試験などの経験をもとに空洞の 開発が進んできた¹²⁰.

この章では金属磁性体空洞の原型に近い形で稼働している例として CERN の LEIR (Low Energy Ion Ring)の金属磁性体空洞¹³⁾について述べ、次により強度の高いビーム加速に成功している J-PARC RCS と MR について述べることとする.

4.1 広帯域空洞(LEIR 空洞)

LEIR は LHC の鉛イオン衝突のための入射器の初段 シンクロトロンである.低エネルギーの鉛イオンの加 速のため広帯域が要求され,金属磁性体空洞が 2005 年 に設置され稼働している¹³.この空洞は 1998 年に放 射線医学総合研究所で試験された最初の金属磁性体空 洞¹²⁾を改良したものであり,金属磁性体空洞としては 原型に近い.この空洞には直径 67 cmの金属磁性体リン グコアが6枚装填されている(図7).金属磁性体はコー ティングされ,冷却槽に設置され,直接冷却水により 冷やされている.この直接冷却の手法は J-PARC とも 共通である¹¹⁾.この空洞のインピーダンスは約2 MHz をピークに緩やかな曲線を描いている(図8).このた め,真空管アンプから高周波電力を供給すれば重イオ ン(鉛)の加速に必要な高周波を自由に出力すること

 図7 2005年に設置した時の CERN LEIR 空洞. 真空 パイプ締結前の高周波印加試験時の写真である. 空洞側面に KEK-CERN Collaboration の文 字が見える. 2 台の空洞が設置されたが,一台 はバックアップ専用である.

ができる.

図8からわかるように、磁性体コアの枚数と空洞の 静電容量を変えることにより帯域をある程度変えるこ とができる. 重イオン加速では500 kHzから5 MHzが 必要であったため LEIR ではコア3枚×2を選択して いる. LEIR で加速されたビームは最終的には LHC に 入射され鉛イオン同士の衝突実験に使われている.

4.2 J-PARC RCS 空洞

J-PARC などの大強度の加速器では広帯域すぎるこ とは欠点でもある. この点は金属磁性体空洞開発の初 期の段階で CERN の RF の大家 Fleming Pedersen 氏に 指摘を受けた点である. すなわち広帯域ではビームの 持つ複数の周波数成分の影響を受けることになり, そ れぞれの周波数に対してビーム負荷に対する補償を行 う必要がある点である.

このため J-PARC RCS¹¹⁾ (図 9) では広帯域空洞に並 列にインダクターを挿入することで共振系のインダク タンスを減らし、共振の Q 値を増やして帯域を減らす ことに成功している¹⁴⁾. 図 10 と図 11 にインダクター の原理と写真を示す.

このインダクターを追加することで補償すべきビー ム負荷の周波数の数を減らすことが可能となるが、一 方で2次高調波混合などビーム増強に必要な性能を保 持しなければならない. RCS ではこの両者の条件を満 足するようにQ値にして2を選んでいる. 図12に2 次高調波の有無によるJ-PARC RCS ビームの入射時の バンチ波形をしめす.

大強度加速器では空間電荷効果によってベータトロン振動数が変化し、ベータトロン共鳴の影響を受ける ことがある.この際に、ビームのバンチ長を伸ばすこ とによって空間電荷効果が緩和されるため、共鳴の影

 図8 LEIR リングに設置した空洞のインピーダンス (2X3CORES) と別の駆動方式(2X2CORES) の比較. 必要な500 kHz から5 MHz までの帯 域をカバーしていることがわかる.

図9 RCS 空洞¹¹⁾. 2012 年現在 11 台の空洞が長い 直線部に設置され稼働している.広帯域空洞 であるため,加速周波数(h=2)と同時に 2 次高調波(h=4)を同時に加速ギャップに出 力できる.入射時には 2 次高調波電圧は基本 波電圧の 80%にも達し,パンチのピーク強度 を大強度加速向きに下げている.ここで h は ハーモニックナンバー.

図10 外部インダクター追加による空洞帯域調整のし くみ、左のLCR 共振回路(広帯域空洞)にイ ンダクターと真空コンデンサーを付け加えるこ とで Q=2 の共振回路を実現している.

響を避けることができる.シミュレーションに基づき 2次高調波を用いたバンチ波長の制御を行っている.シ ミュレーションと実験はよく一致し,2次高調波技術は RCSでの大強度加速に必要不可欠な技術となっている¹⁸.

また J-PARC RCS と MR の両者ともにビーム信号を 用いたフィードフォワード技術により,加速空洞に誘 起されるビーム誘起電圧を補償することに成功してい る¹⁹⁾. インピーダンスの安定した負荷である金属磁性 体空洞と組み合わせることにより,従来のフェライト 空洞では達成できなかった高い安定性と再現性を実現 した. これによりビームから見た空洞のインピーダン スは 1/30 以下の 25 Ωとなっている. この技術を用い ることにより RCS の RF システム単体では 1 MW ビー ム加速の見通しをつけることができた. フィードフォ ワードは地上部の LLRF を強化するだけで実現できる 点でも効率的な手法である. この技術は最近では J-PARC MR での営業運転にも応用されている. これに ついての詳細な報告は別の機会に譲ることとする.

図11 J-PARC RCS 空洞に設置された空芯インダク ター.発熱を調査するためにサーモラベルを張 り,温度を測定していているときの写真である.

図12 J-PARC RCS の入射時のビームバンチ波形. 右:基本波のみの場合,左:2次高調波を混合 した場合^{16,17)}.

RCSではコア1枚当たり約7kWのRFが投入されている.このコアは防錆樹脂によって保護され直接純水によって冷却されている.コアの内部でのRF密度は1/rに比例するため、コアの発熱は内周側に集中することとなる.このため、一部の磁性体コアで内周側に座屈が発生した.これに対し樹脂含浸工程を改良し、この問題を解決した¹⁵⁾.なお、MRでは、後述するようにカットコアが使われているため、発熱分布は均一に近く、こうした座屈は発生していない.

4.3 J-PARC MR空洞

J-PARC MR ではビーム負荷により広帯域の空洞を 使うことがより困難になる. これはバンチの幅が極端 に短くなり多くの高調波成分を持つことと取出しキッ カーの立ち上がり時間を確保する空きバケツがあるた め周期的で過渡的なビーム負荷現象があることによる. MR のバンチ幅は 581 ns の周期に対し約 20 ns 程度し かなく,数十メガヘルツまでの多くの高調波成分を有 する. また,ピーク強度は現時点でも 100 アンペアを 越している²⁰⁾ ので空洞に誘起する電圧を抑える工夫が 必要となる.

このため, MR ではカットコアと呼ばれる手法により磁性体コアのインダクタンスを大幅に減らし, Q 値を増やすことで空洞の帯域を狭め,高調波の影響を受けにくくしている²¹⁾. ここでカットコアとはリング状

のコアを2つに分割し、間にスペーサーを挟み磁性体 コアのインダクタンスを調整する手法である(図13). MRでは10mmのスペーサーを挟むことでQ=26のシス テムを実現している.このカットコアを製造する上で カギとなるのが、カット面の処理である.我々はKEK 工作室の協力を得て、ダイヤモンド研磨を大型コアに 応用した²¹⁾.さらにカット面にポリシラザンを塗布す ることで保護を強化した.研磨の良否はカットコアの スペーサーを薄くし、RFを投入することで部分的な 発熱がないかを赤外線カメラによって確認している. 図14に試験の様子と赤外線カメラでみた発熱分布を示 す.この図のように、切断面で発熱がないものをカッ トコアとして使用している.比較のために、表面に酸 化銅が付着したコアの発熱分布を図15に示す.

MR 空洞はごく最近まで, 空洞インピーダンス(特性) の低下という深刻な問題を抱えていた. これは空洞設 置前の長時間ベンチテスト(~2000時間)では見られ なかった現象がそれより短期間に発生したものである. 我々は J-PARC 内外の研究者の協力を得て,磁性体コ アを冷却している純水系に電磁石からでた酸化銅が混 じり,これが磁性体コアのカット面に付着して発熱,コ アへのダメージを起こしていることを明らかにした²²⁾.

図13 カットコアの模式図. カットコアのギャップ高 により、インダクタンスが変化する.

図14 カットコアの試験の様子.右:写真,左:赤外 線カメラで見たもの.⇒の位置にカット面があ るが,局所的な発熱がないことがわかる.

これに基づき,空洞冷却系と電磁石冷却系の分離を行った. さらにシリコンラバーを用いた簡便なカット面の 保護法を開発し,これを順次空洞交換時に適用した²³⁾. 現在ではインピーダンスの変化もなく,安定した加速 空洞の運転を行っている. 図16にMR高周波システム の写真を示す.また,MR空洞もRCS空洞同様に直接 磁性体コアを純水で冷却する方式を採用している.

図15 カット面の局所発熱の例.Xの位置で発熱していることがわかる.これは加速器内の冷却水系から酸化銅が付着したコアで,通常コアではこのような発熱は極めてまれである.カット面に高周波磁場が通りにくくなったため,外周部と内周部にも発熱が見える.

図16 MR 高周波システム. 2012年5月現在8台の加速空洞が稼働し、2.56秒サイクルでの運転を可能にしている. この空洞システムを如何に改良し、将来の高繰り返しに対応できるシステムにするかが、J-PARC加速器の強度増強にとって重要な課題である.

5. 金属磁性体

5.1 高インピーダンス磁性体 FT3L

J-PARC で用いられている金属磁性体ファインメッ ト®²⁴⁾はアモルファス状態の金属を高温で加熱処理 し、ナノメーターサイズの結晶を形成させることで高 いインピーダンスを実現している.ファインメット® は鉄(76-89%), 珪素(6-10%), ニオブ(3-7%), ホ ウ素 (1-3%), 銅 (1-2%) からなる合金である. この 材料に熱処理時に磁場をかけることで結晶の磁化容易 軸を制御した材料 FT3L 材, H 材が存在する. これに 対し、磁場処理をしない材料はFT3M 材と呼ばれ、 J-PARCやCERN LEIRではこの材料が使われている. 実は我々が金属磁性体空洞の開発を始めた 1995 年時点 でもFT3L材は存在したが、必ずしも特性はFT3M材 に比べて優れてはいなかった. ところが、2003年ころ にリボンの厚みの薄いリボンが製造可能になると、こ の薄いリボンで作った FT3L 材が高いインピーダンス を持つことが明らかになった.図17に特性の比較を示 す. 磁場中での熱処理と薄いリボンの使用の2点を組 み合わせることで特性が約2倍になることがわかる.

5.2 大型 FT3L コアの製造

このようなコアを製造し, J-PARC の加速空洞のコ アを置き換えることができればよいのだが,現実には 大きな問題が存在した.つまり, J-PARC で使用して いるような大型コアを磁場中で熱処理できる設備がな かったことである.このため,我々はJ-PARC ハドロ ングループと低温グループの協力を得て,ハドロンホー ルの原子核実験用に準備していた FM 電磁石(旧東京 大学原子核研究所の FM サイクロトロン磁石)を借り て,大型コアの製造試験を行った.図18 にその時の写 真を示す.また図19 は我々が製造した大型コア(FT3L 材)である.この製造には丸1日かかるため,実際の

図17 磁性体特性の比較。磁場中熱処理(FT3L)と同時にリボンの厚さを薄くすることにより磁性体の特性が大幅に向上することがわかる.

— 78 —

製造試験では J-PARC 加速器運転を行っている日本ア ドバンステクノロジー(株)の協力を得て行い,約10 枚の大型コアの製造を行うことができた.この製造は 東日本大震災の後の6月から7月にかけて進められた. J-PARC のハドロンホールは震災により建屋にダメー ジがあり,復旧工事も必要であり,当初はこの製造試 験は無理かと思われたが,ハドロングループの協力の

図18 FM 電磁石とオーブン.上:オーブンの架台を 地震の直前に補強したため,オーブンには致命 的な損傷はなかった.下:オーブンへの磁性体 コア設置風景.

図19 最初に製造に成功した FT3L 大型コア (外径 80 cm).

図 20 ハドロンホールで製造に成功した FT3L コアの 特性. 横軸は周波数,縦軸はµQf積でありシャ ンとインピーダンスに相当する.赤が FT3L, 黒が J-PARC で使っている FT3M, ほかの色は 異なる条件で製造したもの.

図21 最初の FT3L 大型カットコア.ダイヤモンド研 磨をおこない,ポリシラザンの保護膜でカット 面を保護している.カットコア状態でも高イン ピーダンスを持つことが確認された.

もと厳重な監視体制,安全管理をおこないつつ進める ことができた⁴⁾.

このハドロンホールでの開発は昨年夏で終了し,量 産に向けた次のステップとして J-PARC ニュートリノ 第一設備棟での試験を予定している.この試験では実 際の量産にも使用できる電磁石を用いて,製造方法の 確立をおこなう.また,磁性体製造に適したより均一 な磁場での製造により,磁性体の性能向上も同時に期 待している.

このようにして製造した金属磁性体コアの特性を図 20 に示す.小型コアで得られたのとほぼ同じ高い μ*Qf* 積を得ることができている.

製造した FT3L コアは現在, カットコアにするため の工程に進んでいる. 図21 は最初のカットコアである. 測定の結果,予定通りのインピーダンスを持っている ことが確認できた.

図 22 μSR 実験のセットアップ.サンプルに 100%偏極したミュオンを入射し,サンプル中でのミュオンの崩壊の様子(前方後方の非対称性)からサンプルの磁性状態を知ることができる.

5.3 高インピーダンス機構

では、どのような機構によりこのような高インピー ダンスが実現しているのだろうか.これにはナノ結晶 の磁化容易軸の向きが関係していると考えられている. このプロセスを調べるため、我々はJ-PARC MLFのミュ オングループと協力し、μSR^{25,26)}と呼ばれる測定法を 用いて結晶化の過程を調べた(図22).図23にアモル ファス状態から結晶が形成される過程のμSR信号を示 す.結晶状態でのキュリー温度はアモルファス状態で のそれより高いため、昇温過程で一度、試料は常磁性 状態となるが、さらに温度を上げると結晶化に伴いふ たたび強磁性となり、μSR信号は速い緩和を示す.こ のようなデータは他の手法でも得ることができるが、 ミクロな状態をその場観察で得ることができるのが μSR法の利点である.

さて、FT3L が高インピーダンスを持つ理由は次の ような機構によると考えられている.FT3L ではナノ 結晶の磁化容易軸と加速空洞稼働中の高周波磁場の向 きが直交するため、ナノ結晶内部の磁化は安定軸を中 心に振動することとなる.一方、従来のFT3M 材の中 にはナノ結晶の磁化容易軸が高周波磁場の向きに平行 なものが存在し、これらは高周波磁場により磁化の向 きが安定点から逆の安定点に反転することになる.こ れらの動作が大きな損失につながると考えられている. 実際 FT3H 材という磁化容易軸が高周波磁場に平行に なるように磁場処理をしたコアではインピーダンスは FT3M より低い値となっている.

6. 高勾配空洞の設計

ここではどのように FT3L という新しい材料を使って加速システムの性能を高めるかについて述べる³³. 図 24 は J-PARC MR で使用されている金属磁性体空

— 79 —

図23 μSR実験の結果.上:460度,下:500度。ア モルファス状態のサンプルがキュリー点を超え ると常磁性状態となり、ミュオンは外部磁場に 対応した回転信号を示す(上図).さらに温度 を上げると、サンプル中にナノ結晶が形成され、 ふたたび強磁性状態となる(ナノ結晶のキュ リー点は500度以上).このときミュオンスピンは内部磁場により速い緩和を示すようになる (下図).

洞の現在の側面図(左)と新しい FT3L 空洞(右)で ある.加速システム全体のコストでみた場合,加速空 洞の占める割合は3分の1から4分の1程度である. したがって、高性能な材質に合わせ、システム全体を 入れ替えるのは効率的ではない. このため, J-PARC では空洞のみを置き換えることにより、性能の大幅な 向上を目指している. ここでカギとなるのは FT3L が 従来のものより約二倍高いインピーダンスを持つ点で ある. 我々は磁性体コアを1.4分の1に薄くすると同 時にインピーダンスを1.4倍増やすことにした. これ により図24のような設計が可能になった. すなわち, 従来の3セル構造を5セルにし、加速電圧をこれまで の36 kVから70 kV にすることである. これにより約 1秒周期でのMR 運転に必要な高周波電圧を得ること ができることになる.また、高周波増幅器から見た空 洞負荷はセルあたりのインピーダンスが高いため現状 と変わらず、同じ陽極電源と高周波増幅器システムを 使うことができる. このように, FT3L 空洞は電力的

図 24 MR 高周波空洞. 左:現状の FT3M を用いた3 セル空洞. 右:FT3L を使うことで高勾配化した5セル空洞. 同じ電源を使うにも拘わらず出力できる高周波電圧は倍となる.

にもエコな空洞であるといえる.

FT3LのJ-PARC RCSへの応用のシナリオは現在検討中である. もっとも有力なのは空洞の一部またはすべてを入れ替えることで,2次高調波電圧を増強することである. これにより,空間電荷効果を今以上に緩和できることがシミュレーションで示されており,さらなるビーム増強が期待できる.

また,空洞の高勾配化により空いたスペースを用い て3次などの高調波を追加して,より長いバンチを形 成することも考えられる.ほかにも,これまで加速中 の運動量広がりが大きくなりすぎるため技術的に困難 であった, h=1の加速も複数の高調波混合を併用する ことで可能になるかもしれない.

この様に、高勾配空洞は今ある加速器の性能を高め る画期的な技術革新であるといえよう. さらに、この 例として現在 KEK と CERN の間で進んでいる LHC の ルミノシティ向上に向けた LHC 入射器アップグレー ド計画における FT3L 空洞⁵⁰ の応用を紹介する.

7. CERN LHC 入射器アップグレード

この共同研究は LHC のルミノシティ向上に向けた LHC 入射器アップグレードと呼ばれる計画の一部であ る (CERN-KEK 協定文書 ICA-JP-0103)⁵⁾. ビーム試験 や半導体アンプの放射線試験などを行い,さまざまな 試験を行った後 2018 年に予定されている長期停止期間 にすべての空洞を金属磁性体空洞(図 25) に入れ替え る予定である.

謝 辞

J-PARC RF グループとしてこの原稿をまとめさせて いただきました. RF グループでは長期にわたり絵面 栄二氏,高田耕治氏,穴見昌三氏,鈴木寛光氏らに協 力をいただき,これまでの開発を進めてきています. RF システム開発にあたり,J-PARC,KEK,JAEAの 加速器グループの方々から貴重な助言と支援をいただ きました.この場を借りて加速器の方々のご協力に感 謝したいと思います.MR の冷却水分離にあっては

図25 CERN PSB (PS ブースター) に設置された金属 磁性体空洞. PSB は4階建の加速器であり,4 台の加速器が同時にビームを加速し,ほぼ同時 に PS に向けビームを取り出す.その一番上の リングに金属磁性体空洞は設置されている.空 洞の横に直結しているのが半導体アンプである.

ニュートリノグループの多田将氏が設計にあたってく れました.また,FT3L大型コアの製造に当たっては J-PARC施設横断的にハドロン,低温,ニュートリノ, ミュオンのグループの協力を得ることができました, またこのほかにも多くの方々のご協力で高勾配空洞を 開発することができましたことに感謝します.最後に なりますが,日本での金属磁性体空洞開発を最初に推 進した森義治氏に感謝します.

参考文献

- 1) T. Koseki, "Status of J-PARC Main Ring After Recovery from the Great East Japan Earthquake Damage", Proceedings of IPAC12, New Orleans, May 20-25, 2012, THPPP079.
- M. Kinsho, "Status of J-PARC 3 GeV RCS". Proceedings of IPAC12, New Orleans, May 20-25, 2012, THPPP083.
- C. Ohmori et al., "Gradient Magnetic Alloy Cavities for J-PARC Upgrade", Proceedings of IPAC11, San Sebastian, Sep. 4-9, 2011, p2885-2887.
- 4) KEK プレスリリース 2011 年 8 月 3 日 J-PARC で加 速器用超高性能磁性体コア量産に成功 http://legacy.kek.jp/ja/news/press/2011/080315/
- 5) R. Garoby, "Upgrade Plans for the LHC Injector Complex", Proceedings of IPAC12, New Orleans, May 20-25, 2012, TUXA02.
- J-PARCの国際協力について ~ LHC入射器アップグ レードのための CERN-KEK 共同研究~ http://accl.kek.jp/topics/topics120308.html
- 7) I. Gardner, "Ferrite Dominated Cavities", CERN Accelerator School-RF Engineering for Particle Accelerators, CERN 92-03, Oxford 1991, p349-374.
- 8) 絵面栄二, "高周波加速入門", 高エネルギー加速器 セミナー OHO2003.

http://accwww2.kek.jp/oho/OHOtxt/OHO-2003/txt-

2003-1.pdf

- 9) Y. Tanabe, et al., "EVALUATION OF MAGNETIC ALLOYS FOR JHF RF CAVITY", Proceedings of APAC98, Tsukuba, Mar. 23-37,1998, 5D006.
- C. Fougeron et al., "Towards the Construction of an Ultra Short Cavity for Heavy Ions Synchrotron" EPAC '90, Nice, France, June 1990, p. 961 (1990)
- 11) M. Yamamoto et al., "High Power Test of MA Cavity for J-PARC RCS", Proceedings of EPAC06, Edinburgh, 2006, p1322-1324.
- 12) C. Ohmori et al., "HIGH FIELD-GRADIENT CAVITIES LOADED WITH MAGNETIC ALLOYS FOR SYNCHROTRONS'", PAC99, New York, U.S.A., March 1999, p.~413 (invited) (1999).
- 13) R. Garoby et al., "The LEIR RF System", Proceedings of PAC05, Knoxville, May 16-20, 2005, p1697-1699.
- 14) A. Schnase et al., "MA Cavities for J-PARC with Controlled Q-value by External Inductor" PAC07, Albuquerque, June 2007, p. 2131 (2007).
- 15) M. Nomura et al., "Condition of MA Cores in the RF Cavities of J-PARC Synchrotrons after Several Years of Operation", Proceedings of IPAC10, Kyoto, p.3723 (2010).
- 16) F. Tamura et al., "Longitudinal painting with large amplitude second harmonic rf voltages in the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex", Phys. Rev. ST Accel. Beams, 12, 041001 (2009).
- 「加速器研究施設トピックス 2010/06/07 ~高勾配加 速システムの実現と更なる高勾配化へ~」 http://accl.kek.jp/topics/topics100607.html
- 18) M. Yamamoto et al., "Simulation of longitudinal beam manipulation during multi-turn injection in J-PARC RCS'", Nucl. Instr. and Meth. A 621 (2010) p.15
- 19) F. Tamura, et al.: "Multiharmonic rf feed forward system for beam loading compensation in wide-band cavities of a rapid cycling synchrotron", Phys. Rev. ST Accel. Beams, 14, 051004 (2011).
- 20) http://youtu.be/y9qCPgNvXNs, http://youtu.be/hjGI0ImRtjY
- M. Yoshii et al., "Present Status of J-PARC Ring RF Systems" PAC07, Albuquerque, NM, U.S.A., June 2007, p. 1511 (2007).
- 22) M. Nomura et al., "Condition of MA Cut Cores in the RF Cavities of J-PARC Main Ring after Several Years of Operation", Proceedings of IPAC11, San Sebastian, Sep. 4-9, 2011, p107-109.
- K. Hasegawa et al., "J-PARC MR RF 空胴の錆対策と 現状", 2012 年加速器学会発表予定
- 24) ナノ結晶軟磁性材料「ファインメット ®」 http://www.hitachi-metals.co.jp/prod/prod02/ p02_21.html
- 25) http://msl-www.kek.jp/msr/muonintro/index_j.html
- 26) A. Yaouanc and P. Dalmas de Reotier, "Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter"

-81 -