新博士紹介

氏名	許斐 太郎* (分子科学研究所)			
論文提出大学	総合研究大学院大学			
学位種類	博士 (理学)			
取得年月日	2012年3月23日			
題目	超伝導加速空洞のための新しい高次			
	モードダンパーの開発			

1. はじめに

超伝導加速空洞は ILC や ERL などの次世代加速器の 中核技術として用いられる. これらの次世代加速器の 特徴はビームが1つの加速空洞を1度しか通過しない 線形加速器を使用する点である. このため加速勾配が 高く,かつビーム衝突点までエミッタンスやエネルギー 広がり等を保ったまま加速できる加速空洞が求められ ている.

博士論文では Demountable Damped Cavity (DDC) と名付けた ILC Main Linac 超伝導空洞のための新しい 高次モード(HOM)ダンパーの開発を行った.本稿では, この HOM ダンパーの特徴と単セル加速空洞を用いて 行った原理実証試験の結果を述べる.最後に,新博士 紹介として,著者の近況と抱負について述べる.

2. ILC Main Linac 用 HOM ダンパー

加速空洞にはビームを加速する加速モード以外に, HOM と呼ばれる共振モードが数多く存在する. HOM はビームが空洞を通過するときに発生するウェーク場 により励起され,後続のビームに作用しビームエミッ タンス・エネルギー広がりを劣化させる. このため, 質の良いビームを作るには HOM ダンパーが不可欠で ある.

ILC の Baseline ではビームパイプ部に TESLA 型 HOM カプラーと呼ばれるバンドパスフィルターを組 み込んだアンテナを設置して HOM をダンプする.加 速モードはバンドパスフィルターによって加速空洞側 に反射して空洞側に閉じ込められる.一方, HOM はカッ プラーから空洞外部に取り出され RF ダンパーでダン プされる.この構造は形状がコンパクトであり,加速 電場の漏えいも小さい点は ILC に適しているといえる. しかし、ビーム軸に対し HOM カプラーが局所的に取 り付けられるため、双極子モードの縮退が解かれ HOM カプラーと結合が弱い HOM が生じるという問題点も ある.また、加速空洞の高電界化の観点からは、複雑 な形状のために、洗浄が困難で 40 MV/m 付近から Q 値が減少し高電界を達成できていない.この現象を Q-Slope と呼んでいる.

3. Demountable Damped Cavity (DDC)

3.1 DDC の特徴と構造

本研究では Baseline 型の HOM ダンパーの問題点を 克服するために Demountable Damped Cavity (DDC) と名付けた HOM ダンパーを ILC の Alternative Cavity Design (ACD) として提案した (図 1).

DDC の RF 構造について説明する.まず,加速モードと HOM は同軸管と結合して,同軸管内に取り込まれる.同軸管内で加速モードは Choke によって反射されて空洞に閉じ込められる.一方 HOM は同軸管を伝播し,同軸管終端に置いた RF 吸収体で熱になり空洞外部に取り出される.

また,DDC では洗浄が容易な構造にすることで,高 電界での Q-Slope 問題を克服することを目指した.そ のために Choke 部をフランジ構造にして Demountable にしている.さらに,He 容器のベースプレートを

* 分子科学研究所 Institute for Molecular Science (E-mail: konomi@ims.ac.jp)

Choke の一部とし Demountable のフランジとしても用いることで、ILC に要求されるコンパクト化を実現する.

3.2 単セル空洞での試験結果

本研究では ILC-ACD としてデザインされた, Ichiro 単セル空洞に DDC を適用し以下に述べる各項目の実証 試験を個別に行った.

(1)シミュレーションによる Choke バンド幅の検証

超伝導空洞は High-Q であるためマイクロフォニック スによる振動や Lorentz Detuning による周波数の離調 問題がある.9-Cell 空洞の Lorentz Detuning 量は約 1 kHz である.このため、Choke のバンド幅を1 kHz 以上に取る必要がある.RF 吸収体での加速モードの損 失を空洞の壁面損失の1%以下を目標として設計した. つまり、空洞の無負荷 Q 値を 1 × 10¹⁰ とすれば RF 吸 収体での損失 Q 値を 1 × 10¹² 以上に設計する.設計方 法は始めに、空洞と同軸管の結合 Q 値は同調曲線法に より算出して結合 Q 値 800 を得た.これにより Choke に課す減衰量が-90 dB 以下とわかる.ILC で許容され るスペースで Choke を作る場合、図 2 に示すように -90 dB 以下になる区間が 25 kHz になり、目標を十分

(a)

-131 -

に満足している (図 2).

(2)加速空洞と Choke の周波数マッチングの実証

空洞冷却時の熱収縮による空洞と Choke の周波数離 調問題も懸念された.しかし,室温で加速空洞と Choke の周波数マッチングをとったのち,2 K に冷却 しても周波数のマッチングが維持されることを実証で きた.これにより冷却による周波数の離調問題がない ことを証明できた.このことは,Choke にチューナー 等を付ける必要がないことを意味している.

(3) Demountable 構造の Super-Joint 特性の実証

Demountable 部の磁場強さは加速空洞の最大表面磁 場の1/6の強さを持つ.このため, Demountable 部は 超伝導特性を持つフランジ(Super-Joint)でなければ ならない.図3に,この課題に取り組み始めてからの 高電界試験(Vertical Test: VT)結果を示す.

加速モードに対する RF 特性は内導体, RF 吸収体の 有無によらず同じであるため, この試験では Demountable 部のみの性能を検証するために内導体, RF 吸収体を挿入していない.実験当初 8th VT は加速 電界 6 MV/m, Qo=8 × 10⁷ であったが, フランジ形状 を徐々に修正することで,最終的に 18thVT に示すよ うに,加速電界 19 MV/m, Qo=1.5 × 10¹⁰ を得ること ができ,DDC の Demountable 構造が高い Super-Joint 特性を持つことを実証した.なお,本研究では DDC 構 造の実証試験を急いだために,加速空洞の高電界化に 必須の遠心バレル研磨を省いている.このため, 18thVT での到達電界の制限は加速空洞側で生じたと考 えている.

(4) Demountable による洗浄容易性の実証

Demountable の実証試験では、一切 X 線は観測され

	TE111	TE110 (1.8 GHz)		TM011
	(1.6 GHz)	Low	High	(2.4 GHz)
DDC	Not Found	620		180
TESLA 型 HOM Coupler	2×10^4	3.5×10^{4}	4.7×10^{3}	1×10^{5}

表1 DDC と ILC Baseline HOM カプラーの HOM Q 値の比較

ていない. このことは Multipacting (MP)・Field Emission (FE)を克服できた事を示している. これに より Demountable 構造による洗浄容易性を実証できた. (5) Multipacting, Filed Emission の検証

シミュレーションでは Choke 内, 同軸管内での MP は弱いことが予想された. 内導体を挿入して行った高 電界試験でも X 線は発生しなかった. このことから, MP や FF の問題はないことが実証された. また, 同時 に内導体を空洞に持ち込んでも MP や FE の種となる ゴミが生じないことを実証できた.

(6) DDC の HOM 減衰特性

表1に 77 K に保持した吸収体を装着した空洞を2 K に冷却して HOM のQ値を測定した結果と,比較のために ILC Baseline HOM カプラー¹⁾の HOM のQ値を示している. DDC で得られたQ値は ILC Baseline HOM カプラーに比べ1から2 桁低い値であり,双極子モードの分離も発生しなかった. これにより,軸対称構造である DDC が期待通りの高い減衰性能を持つことを実証できた.

4. 今後の展望

本研究では DDC 構造の原理実証を主目的に行った. DDC はビーム軸対称性と高い HOM 減衰特性を兼ね備 えた HOM ダンパーであり,超伝導空洞に適している と考えている.この構造を多連空洞に適用する場合の 最適な方法を現在検討している

5. 近況と抱負

博士課程終了後,幸運にも自然科学研究機構分子科 学研究所極端紫外光研究施設(UVSOR)に助教として 採用された.UVSORは750 MeVのシンクロトロン光 源であり,2012年5月現在,蓄積リングのアップグレー ド作業が行われており,これに従事している.6月か らの立上調整では,直線加速器,ブースターシンクロ トロン,電子蓄積リングの運転調整に参加し,加速器 の運転を経験できることを楽しみにしている.また, UVSORでは共振器型自由電子レーザー,外部レーザー を用いたコヒーレントシンクロトロン光源やレーザー コンプトン光源の開発,分子科学研究への応用を目指 した偏極電子源の開発など,数多くの開発研究が進行 しており,これらへも積極的に参加し,加速器応用技 術に関して幅広く勉強したいと思っている.

一方, UVSOR では線形加速器を用いた真空紫外・ 軟X線自由電子レーザーを将来計画の候補の一つと考 えている.現在,国内外で実用化されている XFEL 光 源のパルス繰り返しは 10 ~ 100 Hz 程度であり,利用 上の大きな制約となっている.このため,UVSOR 次期 計画では kHz オーダーの高いビーム繰り返しの直線加 速器の実現が求められている.私は現在,小型放射光 施設に適した規模でかつ,高繰り返し可能な加速空洞 のアイデアを探っている.このような新しい加速器建 設の構想段階から参加できることに心躍る思いである.

参考文献

1) 渡邉謙. "超伝導9セル加速空胴の高次モードに関 する研究",総合研究大学院大学博士論文,2007.