KEKB 加速器が切り開いたルミノシティ最前線

赤井 和憲*1·小磯 晴代*2

The KEKB accelerator: pioneer of the luminosity frontier

Kazunori AKAI^{*1}, Haruyo KOISO^{*2}

Abstract

KEKB stopped the operation on June 30, 2010, and has started to upgrade to SuperKEKB aiming at 40 times higher luminosity to search for new physics beyond the Standard Model. Since 2001 KEKB has been running at the world highest luminosity and has achieved the record of 2.11×10^{34} cm⁻²s⁻¹, which is more than twice the design luminosity. This paper describes the history, achievements, and operation experiences of KEKB.

1. はじめに

2010年6月30日,高エネルギー加速器研究機構のB ファクトリーKEKBは、1997年の入射器コミッショニ ングから始まったビーム運転を終了し、SuperKEKB に向けて第一歩を踏み出した.KEKBは、2001年に ライバルのPEP-IIを追い越し、 $3.4 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ を達成してルミノシティ最前線に立った.以後順調 に衝突性能を上げ、最終的には設計値の2倍を上回 る2.11×10³⁴ cm⁻² s⁻¹を記録している.Belle 測定器 が蓄積した総積分ルミノシティは1040 fb⁻¹ である.

KEKB のコミッショニングと成果については,小林・益川理論の実証に貢献したことを記念して加速 器学会誌に特集が組まれ¹⁾,また最近のクラブ交差に よるルミノシティ記録更新についても報告がなされ ている²⁾. これらの記事と重複する部分もあるが,この機会に,KEKB のこれまでの歩みと到達点を見直してみたい. 主な履歴を**表1**以下にまとめておく.

2. マシン・パラメータの設計と現実

KEKB は 3.5 GeV 陽 電子 リング (LER), 8 GeV 電子リング (HER), および入射リニアックから成 る, エネルギー非対称な 2 リング・コライダーであ る. KEKB の設計が開始された 1989 年頃は, 米国 Cornell 大学の CESR (5.3 GeV の1 リング電子・陽 電子コライダー) がルミノシティ最前線に立ってお り, KEKB が目指すルミノシティ1×10³⁴ cm⁻² s⁻¹ は, CESR の 100 倍に当たるものであった (図2 参照).

衝突型加速器のルミノシティ(L)は、三つの主要 パラメータである、ビーム電流(I_±)、衝突点におけ

図1 制御室におけるビーム運転終了セレモニー³⁾

*¹ 高エネルギー加速器研究機構(E-mail: kazunori.akai@kek.jp) *² 高エネルギー加速器研究機構(E-mail: haruyo.koiso@kek.jp)

表1 KEKB の主な履歴

設計開始
建設開始
入射リニアック改造終了、ビーム運転開始
リングビーム運転開始
Belle 検出器で最初の素粒子反応観測
PEP-IIを追い越し、当時の世界最高ルミノ
シティ 3.4×10 ³³ cm ⁻² s ⁻¹ 達成
陽電子2バンチ/パルス入射開始
設計ルミノシティ 10 ³⁴ cm ⁻² s ⁻¹ 達成
連続入射モード開始
クラブ交差開始
電子·陽電子同時入射開始
クラブ交差以前の記録を更新し、設計値の
2 倍を超える 2.11×10 ³⁴ cm ⁻² s ⁻¹ 達成
積分ルミノシティ 1040 fb⁻¹ 達成
アップグレードに着手

る垂直方向 β 関数 (β_{y}^{*}),および垂直方向ビームビー ム・チューンシフト・パラメータ ($\xi_{y\pm}$)によって以 下のように表される (±は陽電子および電子ビーム に対応. 衝突点の β 関数とビームサイズは両ビーム で同じとする).

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{y\pm}}{\beta_y^*} \left(\frac{R_L}{R_{\xi y\pm}} \right)$$

ここで、 $R_L \ge R_{sy\pm}$ はそれぞれ、砂時計効果や衝突 点における交差角などによる、ルミノシティと ξ_{\pm} に 対する補正係数であり、バンチ長が β_y に比べて充分 に小さければ $R_L/R_{sy\pm} \sim 1$ となる.

高ルミノシティを得るには、 $I_{\pm} \geq \xi_{y\pm}$ を大きく、 β_{y}^{*} を小さくする必要がある. この基本的な方針に沿っ て、KEKB では、ビームビーム・チューンシフト・ パラメータとして当時想定された最大値 $\xi_{y\pm}$ =0.052 を選び、 β_{y}^{*} =1 cm とビーム電流 2.6 A(LER)/1.1A (HER)を目標とした.

主なマシン・パラメータについて,有限角度交差 およびクラブ交差で最高ルミノシティを達成した時 の値を,設計値と合わせて表2に,また,衝突開始 後の全期間の履歴を図3に示す.

2.1 ビーム電流とバンチ間隔

大電流運転については第4章で詳しく報告する が,実用運転でのビーム電流は,表2に示すように, HERでは設計値より高く,LERは低い値であった.

KEKB の性能に最も大きな影響を及ぼしたものは、

図2 世界のコライダーのルミノシティ4)

電子雲不安定性による LER の垂直方向ビームサイズ 増大である.電子雲による結合バンチ不安定性は設 計時に考慮され,ビームパイプをアンテチェンバー 型にしなくともバンチ毎フィードバックによって抑 制できると予想されていた.ところが,実際に障害 となったのは単バンチ・ヘッドテイル不安定性であ り,ドリフト空間にソレノイドを巻き付けるという 対策によって電子雲密度を下げ⁶,ようやく 2001 年 に当時の世界最高ルミノシティを達成した.

電子雲の影響は、最後まで完全には排除できず、 設計ではバンチ間隔1バケットを想定していたが、 実際は平均3.06 バケットが最短であった.このため、 設計値と比較して、バンチ数が少なくバンチ電流が 大きい状態となり、大電流を蓄積するに当たって各 種ハードウェア機器には大きな負担を強いることに なった(入射リニアックとリングのRF周波数の関係 から、2バンチ/パルス入射の場合は49 バケット毎 に同じバンチ・パターンにする必要がある.平均3.06 バケットは、3 バケット15ヵ所と4 バケット1ヵ所 の繰り返しパターンとなる).

2.2 ビームビーム・パラメータ

2.2.1 有限角度交差

KEKBでは、衝突点においてビーム軌道に水平方 向22 mradの交差角を与えている⁷⁾. 有限角度交差に は、衝突点近傍にビームを分離するための偏向磁石 を配置する必要がなく、衝突点の設計が単純化され、 測定器バックグラウンドも大幅に軽減される、とい う大きな利点がある. また、有限角度交差によるシ ンクロトロン・ベータトロン結合の影響は、ベータ トロン・チューンを適切に選べば障害とならないこ とが、設計時のシミュレーションで確認されていた.

	6/17/2009		11/15/2006		Design		
	LER	HER	LER	HER	LER	HER	
Eff. crossing angle	0 (crab)		22		22		mrad
Current	1.64	1.19	1.65	1.33	2.6	1.1	А
Bunches	1584		1389		5000		
Current/bunch	1.03	0.75	1.19	0.96	0.56	0.22	mA
Spacing mostly	mostly 1.8		1.8 or 2.4		0.6		m
Emittance ε_x	18	24	18	24	18	18	nm
β_x^*	120	120	59	56	33	33	cm
β_y^*	0.59	0.59	0.65	0.59	1.0	1.0	cm
Hor. Size @IP	147	170	103	116	77	77	μm
Ver. Size @IP	0.94	0.94	1.9	1.9	1.9	1.9	μm
Bunch length	\sim 7		\sim 7		5		mm
ξ́x	.127	.102	.116	.134	039	.039	
ξy	.129	.090	.101	.056	.052	.052	
Luminosity	21.08		17.6		10		/nb/s
∫ Lum./day	1.479		1.232		~0.6		/fb
∫ Lum./7 days	8.43		7.82		-		/fb
∫ Lum./30 days	27.2		30.2		_		/fb

表2 主要なマシン・パラメータ. 垂直ビームサイズ実現値は、両リングで等しいと仮定して、ルミノシティ から推定した

図3 KEKB の履歴⁵⁾:上段からピーク・ルミノシティ(1/nb/s=10³³ cm⁻² s⁻¹),1日当たりの積分ルミノシティ,ビーム電流最 大値(LER および HER),総積分ルミノシティおよび効率(1日当たりの積分ルミノシティとピーク・ルミノシティ×24 時間の比).

KEKB では実際に、有限角度交差によって設計値を 大きく超える $1.76 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ が達成され、ビー ムビーム・パラメータについても設計値を超える $\xi_y=0.056$ が得られた.

2.2.2 クラブ交差

ビーム軌道の交差角を維持したまま正面衝突と同 等の衝突状態を実現できるクラブ交差に注目が集 まったのは、正面衝突で飛躍的に大きな*ξ*,を達成で きる可能性のあることが、ビームビーム・シミュレー ションで新たに示されたからである⁸⁰. クラブ交差に 必要な超伝導クラブ空洞は、有限角度交差のバック アップとして KEKB の当初から開発が進められてい た.

KEKB では、2007 年に両リングに1台ずつクラブ 空洞を設置し、クラブ交差によるビーム衝突を開始 した.2年間にわたるビーム調整の結果、クラブ設 置以前の記録を上回るルミノシティが達成され、こ れが最終的な KEKB のピーク・ルミノシティ記録と なった.

クラブ交差によってビームビーム・パラメータは 世界最高値に近い ξ_y =0.09が得られたが、残念なが ら、シミュレーションから期待された ξ_y ~0.15は 達成できず、この経験が SuperKEKB の設計方針を、 大電流・クラブ交差方式からナノビーム方式に転換 する主要因の一つとなった.

2.3 衝突点β関数

KEKBのラティスは、衝突点垂直β関数を1 cm ま で絞った状態で充分な力学口径を持ち、同時に、水 平エミッタンスと運動量圧縮率について各々独立に 広い調整範囲を確保できるように、アーク部を「2.5 π セル構造」と呼ばれる特殊なセルで構成している⁷⁷. セル内の六極磁石は、2台の六極間の転送行列が-I'変換となるようにペアを組み、しかも各ペアが相互 に重なり合わないように配置される.この配置によ り、六極磁石の非線形性はペアを成す六極間でほぼ 相殺されるので、広い力学口径を得ることができる. さらに、充分な Touschek 寿命を得るために、より広 い力学口径を必要とする LER には、衝突点区間にも 六極ペアを設置し、「局所色収差補正」を行っている.

KEKB のラティスは、期待どおりの性能を発揮し、 両リングとも設計値より小さい $\beta_y^*=0.59$ cm を実現し た. バンチ長の実測値は 6 ~ 7 mm なので、バンチ 長から許容される下限近くまで β_y^* を絞ったといえる.

HER の水平エミッタンスは,LER の電子雲対策が 不十分だった時点で,LER とのバランスをとって設 計値より大きい 24 nm に設定され,以後この値で調 整が進められたため、そのままになっている.また、 運動量圧縮率は、設計値よりバンチ数が少なくバン チ電流が大きい状態に対応して、バンチ長を長めに するために調整されている.このような 2.5 π セル 構造の flexibility は、できる限り少ない変更によって SuperKEKB で要求される低エミッタンスを実現する ために、最大限に活用されることになる.

3. ルミノシティ調整

KEKB の性能を支える主要な項目の全てが,設計時に想定されていたわけではない. ビーム運転の試行錯誤の中から生まれてきたものも多い. そのいくつかを以下で紹介する.

3.1 入射方式

表1に主要なステップとして挙げた,「2バンチ/ パルス入射」,「連続入射モード」,「同時入射」も, 当初の計画にはなくビーム運転の過程で開発されて きたものである^{9,10}.特に2004年に実用化された連 続入射モードは,Belle 測定器のデータ収集を行いな がら,同時に入射器からリングへのビーム入射を行 う運転モードであり,ビーム電流を一定に保って高 ルミノシティを維持できるため,積分ルミノシティ を飛躍的に高めた(図3の2,4段目参照).このとき, PEP-II もほぼ同時に連続入射モードを実用化してい る.

3.2 マシン・エラーの補正

加速器が設計どおりの性能を発揮するには,ビー ムを使ったマシン・エラーの補正が必須である.特 にKEKBでは,高ルミノシティを追求して,水平ベー タトロン・チューンの動作点を半整数共鳴線に近づ けていったために,オプティクスはエラーに敏感に なり,補正はますます重要になった.

補正の基本的な方針は「ステアリング磁石による キックや RF 周波数シフトに対するビーム軌道の応 答が、モデルに近くなるようにする」という単純な もので、磁石電源の微調整と六極磁石に立てる水平・ 垂直バンプ軌道がコレクターとして使われた. -I' 変換で結合された六極ペアは、垂直方向の対称バン プで水平垂直カップリングを、反対称バンプでディ スパージョンを、それぞれほぼ独立に調整できるた め、大変有効な補正ツールとなった.

3.3 IPノブ調整

高ルミノシティを達成するには、リング全周のオ プティクスを補正した上で、さらに衝突点の光学系 パラメータを調整する必要があった.ここでも六極 バンプが活躍し、衝突点の両側各8台の六極磁石に バンプ軌道をつくって、衝突点の水平垂直カップリ ング・パラメータ、垂直ディスパージョンなどの微 調整を行った.調整すべきパラメータは30以上あり、 通常はパラメータを1つずつスキャンして、ルミノ シティ、ビームサイズ、ビーム寿命、チューン、入 射効率、等々の限られた観測量を総合的に判断して、 最適値を求めた.加速器の状態は刻々と変化してい くので、物理ランを行ってる間、常に調整が続けら れた.

3.4 カップリングの運動量依存性

クラブ交差におけるルミノシティ記録更新の突破 ロを開いたのは, 歪六極磁石による水平垂直カップ リングの運動量依存性の補正である²⁾. Belle 測定器 のソレノイド磁場は, 逆極性の補償ソレノイドによっ て, 衝突点の両側でそれぞれ積分値がゼロになるよ うに補正されている. しかも, 衝突点から最終収束 磁石までのドリフト空間内で, 積分値がゼロに近く なっているので, 水平垂直カップリングの運動量依 存性は本来小さい. したがって, それまで水平垂直 カップリングの運動量依存性補正は行ってこなかっ た.

クラブ交差によるルミノシティ調整を行っている 過程で,水平垂直カップリングの運動量依存性がル ミノシティを制限している可能性が指摘され,急遽 小型の歪六極磁石を製作・設置し調整に用いたとこ ろ,明らかな効果を発揮した.この歪六極磁場によ る調整は,少数バンチ(~100バンチ,電子雲の影 響を受けない)の衝突実験で,有限角度交差の場合に もクラブ交差と同程度の効果があることが確認され た.

4. 大電流運転

KEKB の設計ビーム電流値 2.6A (LER) /1.1 A (HER) は,前身の TRISTAN 加速器に比較して二桁 高い. KEKB と同時期に建設された PEP-II とともに, 未踏のビーム電流領域での運転は,ハードウェア機器にとって大きなチャレンジであった.

蓄積電流が高く、かつ周長の長いリングで特に問題となる、加速モードに起因する縦方向結合バンチビーム不安定への対策として、KEKBではARES型常伝導空洞および超伝導空洞を採用した。ARES空洞は、加速空洞にQ値の高い電磁場エネルギー貯蔵空洞を結合空洞経由で共鳴的に結合させた三空洞系である。一方、超伝導空洞は加速電圧が高く、いずれの場合も空洞内の貯蔵エネルギーが高いので、ビーム負荷に整合させるための離調周波数が小さく、し

たがって、当該不安定の発生する電流閾値が高い. 従来型常伝導空洞を使用し、フィードバックで不安 定を抑え込もうとする PEP-II とは対照的な、KEKB の特長の一つである.

高次モード(higher order mode; HOM) などの寄 生モードに起因する結合バンチビーム不安定や局所 発熱を抑制するため,加速空洞,可動マスク,ベロー ズなど,ビームとの電磁的な相互作用の特に強い機 器においては,高いQ値のトラップモードを除去し, インピーダンスを十分に低減するよう,工夫した.

ビームがリング内で放射光や寄生モードロスに よって失うエネルギーは、RFシステムから補給され る. KEKB では低い RF 電圧で高いビームパワーを 供給するため、各空洞の運転パワーが高い. ARES 空洞2台に供給する RF ステーションでは連続波 700 kW 程度での定常運転となり、大電力機器の地道 な維持・保守も大電流運転を支えていた.

ビーム電流が高いほど, ビームからの放射光やウェ イク電磁場が強くなり、ビームにさらされる各機器 には放電の発生や発熱によるリスクが増す.機器の 異常やビーム不安定によって,正常な軌道から外れ たビームに直撃されることもある. これらは, 真空 リークや機器の破損を引き起こす場合が往々にして ある. このようなリスクを考慮して設計された機器 ではあるが、ビーム電流を上げていく過程で、予測 していなかったさまざまな問題が発生した. 故障の たびに深夜でも担当者が対処して、最速の復旧作 業を行うとともに、より高い電流に耐えられるよ う,機器の改良を続けた.このようにして,次第に KEKB 全体として大電流に対して robust なものへと 成長していった、ビーム電流増強の観点から、図3 の三段目、両リングのビーム電流の履歴を参照しつ つ,運転を振り返ってみたい.

4.1 運転開始から 2003 年頃まで

コミッショニングはまず小電流でスタートし,加 速器調整を行いながら,約3年程度かけて徐々にビー ム電流を増加させた.この期間は,大電流ビームか らの影響を最も強く受ける機器,たとえば可動マス クやベローズ等の真空機器,RF空洞の入力カプラー やHOM ダンパー,フィードバックのキッカーなど において,数多くのトラブルが発生した.故障の状況, 原因と対策について,加速器学会誌のKEKB 特集記 事等¹¹⁻¹⁴ に詳しく報告されているので,ここでは 割愛する.

この他に印象に残っている事例として, Belle 検 出器の衝突点ビームパイプが異常発熱し, あわや大 事故,と肝を冷やしたことがある.通常は4ないし 3バケット間隔のフィルパターンでビームを蓄積し ているが,この時は加速器スタディのため5バケッ ト間隔で積んでいた.衝突点ベリリウムパイプを放 射光から保護するためにつけた突起状の光マスクに よって囲まれた領域が空洞形状をなし,5バケット 間隔のビームスペクトルのピークの一つに非常に近 い周波数に共振モードが存在し¹⁵⁾,それが共鳴的に 成長したことが原因とわかった.その後,衝突点ビー ムパイプを改造する際に,空洞形状を作らないよう に,下流側のマスクが取り除かれた.

ある機器に問題が発生すると、原因を調査して改 良を行い、そこを超えて新しい電流領域に入ると別 の問題に直面する、という「もぐらたたき」を繰り 返しながらも、次第に高い電流領域に進んでいった. この間、PEP-IIとの競争というプレッシャーが、大 きな力となっていたことも確かであろう.

新しい電流領域に入る時に慎重を期すため、また 不注意な操作等により過大なビーム電流を積むこと のないように、全電流、全電流の2乗/バンチ数、 全電流/バンチ数の三つのパラメータの上限値を、 管理しながら運転した.全電流は主として放射光パ ワーによる発熱に対して、全電流の2乗/バンチ数 は HOM パワー(共鳴の影響は別として)に対して、 全電流/バンチ数は主としてビームモニタ電極への 過大な入力に対して、それぞれ機器の保護を目的と して、状況に応じて設定された.

4.2 2003 年から 2006 年頃まで

この期間のLERビーム電流の増加は1.6Aから1.8 A 程度までと小さい.この理由は、電子雲によるビー ムサイズ増大のため、それ以上LER電流を増やして もルミノシティ増加に結びつかなかったからである. 前述のように、ソレノイドによる対策を講じ大きく 改善したが、電子雲は完全には解消されず、1.8 Aを 超えると深刻な影響を及ぼす状況は最後まで続いた. なお、2005年末の加速器スタディにおいて、LERに 試験的に2A(3バケット間隔)を蓄積し、この電流 でもハードウェアとして問題のないことを確認した.

一方,HER は設計値 1.1 A を超えてさらに電流を 増やせばルミノシティが増加する傾向が見られてい た.そこで,RF ステーションを増設するとともに, HOM ダンパーの冷却能力を増強した.また,超伝導 空洞の入力カプラーの突き出し量を変えて負荷 Q 値 を下げ,より大電流にマッチングさせるとともに, ドアノブ型同軸・導波管変換部の冷却強化などを行 い,空洞あたりのビームパワーを設計値の 250 kW か ら 400 kW 程度まで高めた. このようにして, 最大 1.4 A まで HER ビーム電流を高めることができ, ルミノ シティ向上に大きく貢献した.

初期に多発した、ビームの影響による機器の故障 はこの時期には激減した.また、ビームアボートの 頻度は、大電流との関連の有無にかかわらず全ての アボートを合計しても、1日あたり平均わずか2~3 回程度である.故障が少なく、アボートの少ない安 定な運転を長期間続けることで、積分ルミノシティ が飛躍的に増加した.

4.3 2007 年から 2010 年 6 月まで(クラブ交差 運転)

クラブ交差運転開始後,最初の約半年間はもっぱ ら小電流(通常と同程度のバンチ電流で,バンチ数 を減らす)での加速器ビーム調整を続けていた.しか し,スペシフィック・ルミノシティがなかなか期待 されたようには上がらず,コミッショニングは苦戦 していた.Belle実験グループとの約束で,秋からは 大電流ルミノシティランに戻すことになっていたが, それをクラブ交差で行うかどうか,議論の的となっ た.クラブ空洞をディチューンして,非クラブ交差 に戻してはどうかという意見があった.そもそも, 大変複雑な構造を持つクラブ空洞が大電流に耐えら れるか,疑問視する見方もあった.たとえディチュー ンしても,クラブ空洞のために大電流を蓄積できな い恐れがあるならば,夏のシャットダウン中にリン グから撤去すべし,というわけである.

そこで、クラブ空洞の大電流蓄積試験を4月と6 月に各2週間かけて行った.4月の試験では空洞真 空圧力の悪化、同軸ビームパイプの発熱等の問題が 起きた. 前者は空洞周辺の新しい真空機器から発生 するガスが空洞表面に吸着されるため、後者は同軸 部の冷却が不足しているためと考えられた. そこで, まず空洞をディチューンして、ビームによる真空ス クラッビングを十分行い、その後室温まで加温して 脱ガスを行った.また、冷却系を改造して、同軸部 のヘリウム流量を増やした.この結果,6月の試験で はクラブ空洞運転時およびディチューン時の両方で, クラブ空洞が大電流での実用運転に十分耐え得るこ とを確認することができた¹⁶⁾. そこで, 10月からの 大電流ルミノシティランをクラブ交差で行うことと なった. その後2010年6月の運転終了に至るまで, クラブ交差でのビーム調整が継続された.

この期間のビーム電流はクラブ導入以前よりも低い.初期のころ電流制限となった主要因は,高いバンチ電流積でのビーム寿命低下である.これはク

ラブ空洞付近の物理口径によるものと考えられた. LER はクラブ空洞の場所ではなく,その周辺で水平 ベータ関数が最大になっていたため,付近の四極磁 石の配線を大幅に変更して,クラブ空洞でベータ関 数が極大になるように改善した.また,衝突点の水 平ベータ関数をゆるめて,両リングのクラブ空洞の ベータ関数を下げた.これらによりビーム寿命が改 善し,バンチ電流積を増加させることができた²⁰.こ のほか,LER 電流が 1.6 A以下に制限されていたの は、クラブ空洞下流側テーパー部におかれた SiC 製 HOM ダンパーの吸収パワーがテストスタンドでの試 験の実績値を上回っていたので,発熱による故障が 心配されたためである.2009 年夏に HOM ダンパー を追加して HOM パワーを分散化させる対策をとり, その後 1.7 A まで上げることができた.

なお、クラブ交差では非クラブ交差に比較して低 いビーム電流で、同等以上のルミノシティが得られ ている.同じルミノシティで比較した場合、運転電 力約50 MW のうち半分を占める RF 系の電力消費の 約1割、2 MW 程度の電力節減に相当する.

5. まとめ

ルミノシティ記録が,終盤の2009年になって,な お更新されたように,KEKBの運転は最後まで「コ ミッショニング」であり,新たな試みが続けられて きた.KEKBで実用化されたクラブ交差は,LHCの アップグレードや次世代電子ハドロン・コライダー 等のキー・コンポーネントとなっている.また,こ の記事で直接には取り上げていないが,ギリギリの 性能要求を受け止めつつ改良を重ね,確実に動作し てきたハードウェア機器/システムが,他に数多く 存在することは言うまでもない.

KEKB が TRISTAN の資産を最大限活用して建設

されたように, SuperKEKB は, 現在の曲線部 2.5 π セル構造を基本的に保持し, ARES 空洞および超伝 導加速空洞など, KEKB の資産をより一層活用して, 40 倍のルミノシティに向かって歩み始めている.

参考文献

- 1) 加速器第6巻1号, pp. 1-95 (2009).
- 船越義裕,「KEKBのルミノシティの最近の進展に ついて」,加速器第6巻3号,pp.222-230 (2009).
- 3) http://www.kek.jp/ja/news/topics/2010/KEKBfactory. html
- http://www-acc.kek.jp/KEKB/Commissioning/trend/ peak_trend.jpg
- 5) http://www-acc.kek.jp/kekb/History/index.html
- 福間均,川本崇,「KEKB での電子雲対策」,加速器 第6巻1号, pp. 90-93 (2009).
- 7) 生出勝宣,「KEKB の切り拓いたもの」,加速器第6 巻1号, pp. 28-34 (2009).
- K. Ohmi et al., Phys. Rev. ST Accel. Beams, Vol.7, 104401 (2004).
- 9) 榎本收志 et al., 「KEKB 電子陽電子入射器の 16 年」, 加速器第6巻1号, pp. 69-75 (2009).
- 10) 菊池光男 et al.,「KEKB-HER, KEKB-LER, RF の三リ ングへの同時入射に成功」,加速器第6巻3号,pp. 231-239 (2009).
- 11) 赤井和憲, 高エネルギーニュース第21巻5号 (2003).
- 12) 赤井和憲,「RF システムの立ち上げ」,加速器第6 巻1号, pp. 54-57 (2009).
- 13) 金澤健一,末次祐介,「運転開始後の真空システム」, 加速器第6巻1号, pp. 58-63 (2009).
- 14) 飛山真理,「バンチフィードバックシステムの立ち 上げ」,加速器第6巻1号, pp. 83-85 (2009).
- 15) 影山達也, private communication
- 赤井和憲,「KEKB クラブ空洞 RF システムのビーム コミッショニング」,加速器第5巻3号, pp. 227-236 (2008).