解説

超高強度レーザー重イオン加速器の不安定核取り出しへの応用

西内 満美子*・榊 泰直*

Towards a Novel Laser-driven Method of Exotic Nuclei Extraction-acceleration

Mamiko NISHIUCHI* and Hironao SAKAKI*

Abstract

A combination of petawatt laser and nuclear physics techniques can facilitate studies for exotic nuclei properties. In this article, the Laser-driven Exotic Nuclei extraction-acceleration method is discussed. A femtosecond petawatt laser extracts the short-lived heavy exotic nuclei created by an external ion beam via nuclear reactions in a target, and accelerates them to high energy in a form of highly charged nuclei. This technique has a significant novelty comparing to the conventional method and facilitates studies for exotic nuclei which will make a big contribution to understand the cosmological nucleosynthesis and astronomical high energy phenomena.

1. はじめに

放射性同位元素の存在は、多岐にわたる科学技 術分野において、基礎研究としてのみならず、応 用としても非常に重要である¹⁻⁴⁾.その中でも崩 壊時間や捕獲確率等の不安定核の特性は、超新星 爆発やX線バーストなどの宇宙における天体現象 のダイナミクスを支配する元素合成過程を知るた めに必要不可欠である⁵⁾. これらの天体の内部に おいては、我々が通常目にするような、鉄よりも 重いほとんどの元素が, r-process として知られ る連鎖的に起こる中性子捕獲現象により合成され ることが知られている.しかしながら、この元素 合成の過程に, 例えば, 中性子過剰アクチノイド の不安定核子がどのようにかかわっているのか 等、まだ不明な点も多く、完全に理解されている というわけでは決してない⁶⁾. そこで,研究者た ちは世界における大型の重イオン加速器施設を用 いて、これらの不安定核子の特性を調査しようと 日々熱心に研究を行っている.

現状これらの不安定核子を生成する技術として は、大きく分けて二つの方法がとられている。一 つ目は Isotope separation on-line (ISOL) 法と呼 ばれる方法, もう一つは Projectile fragmentation (PF) 法と呼ばれる方法である. それぞれ CERN における ISOLDE⁷⁾ や RIKEN における RIBF⁸⁾ に代表される方式といえる. それぞれの方式の特 徴により,取り出せる核種の特性に偏りがある. また,最新鋭の両技術をもってしても,取り出せ ない核種が多く存在することも事実である. そこ で,超高強度レーザー技術をこれらの既存技術に 融合させることで,これらの手法では迫ることが できなかった領域に迫ることができるのではない だろうか? という提案がこの解説の本題であ る.

2. 超高強度レーザーを用いた重イオン加 速技術

近年における超高強度レーザー技術の発展により、ピークパワーがペタワット級の波長 0.8 µm のレーザー光をほぼ回折限界に近い 1 µm の直径 に絞り込み、10²² Wcm⁻² という集光強度を達成 することが可能となった.この集光強度に相当す る、レーザーの持つ電場ピーク強度は水素原子内 部電場をはるかに凌駕する値であり、物質とこの ようなレーザー光が相互作用することで、物質は 一気にプラズマ化され、その中の一番軽い電子は わずかレーザーの1サイクル内で相対論的速度に

^{*} 国立研究開発法人 量子科学技術研究開発機構 National Institutes for Quantum and Radiological Science and Technology (E-mail: nishiuchi.mamiko@qst.go.jp)

まで加速を受ける. 生成されたプラズマの動きは レーザー電磁場によって支配され、集団的な挙動 を示す. ターゲットとして薄膜を用いた場合, Target Normal Sheath 加速と呼ばれる加速機構 (TNSA 機構⁹⁾) においては, レーザー照射によっ て加速された高エネルギー電子が持ち去るチャー ジの分だけ、ターゲットがプラスにチャージアッ プし, そのプラスに帯電したターゲットと加速さ れてターゲットを離れようとする電子のうち, ターゲットのプラスのチャージに引き戻される電 子成分との間に、強烈な電荷分離電場(静電場) が生じる、その電場勾配は上記のレベルの強度の レーザーとの相互作用時において 100 TV/m 程 度にも至る. まさに薄膜ターゲットが, レーザー の時間変動する光電場を準静的な電場に変換す る, AC-DC コンバーターのような働きをする. このように強烈な電場に曝されれば、ターゲット 内部の被加速粒子は、効率的に電子を剥がされ、 そして瞬時に加速を受けて高エネルギーで飛び出 すことになる.

このように加速されたイオンの横エミッタンス は 10⁻⁴ π・mm・mrad と非常に小さく,時間幅も レーザーのパルス幅程度,すなわちピコ秒以下で あることがわかっている⁹⁾.また,そのピーク電 流も非常に高くメガアンペアにも達する.しかし ながら加速できるイオンの最高エネルギーが 100 MeV/u 程度である⁹⁾,加速粒子の持つエネ ルギースペクトルが単色ではない,発生したビー ムが発散角を持つ,等という解決すべき課題も 多々存在する.さらに,多くの場合被加速粒子と して選択されているのは,加速が比較的容易な軽 元素がほとんどであり,重イオンの加速はあまり 行われていない.

いくつかの加速メカニズムが提案されている中 で、上記の課題を解決することができ、最も加速 効率が良いとされている加速に輻射圧加速機構と いうものがある¹⁰⁻¹³.輻射圧加速機構において は、超高強度レーザーが薄膜ターゲットに照射さ れることで、一気に薄膜内部構成元素の電子を加 速して「塊」として取り去ってしまうことで、全 体としてプラスのチャージを持つイオンが残され る.レーザーが照射され続ける間この電子塊は加 速され続ける.一方これらの電子塊とイオン塊と の間には強烈なクーロン力が形成されイオン塊も 電子に引きずられることで加速を受ける. この加 速機構の兆候を計測したという実験結果はいくつ か存在するものの,輻射圧加速機構を支配的に引 き起こす条件を最適化するのが非常に難しいた め,現在世界における数多くの研究所が,この実 現に向け精力的に研究を行っている.

この加速機構が実現すれば、加速して取り出し たい元素を、レーザーの照射野内部を全体として 加速して取り出すことが可能となり、非常に効率 が良い加速が実現する.また超高強度のレーザー を最適な厚みのターゲットと相互作用させること で、被加速粒子が重イオンでも、効率的に多価電 離されたのち極高強度電場によって加速されるた め、達成できるイオンのエネルギーは現状の数十 MeV/uと比較して格段に上がると考えられる¹⁰⁻¹³⁾.

以上のような特徴から、レーザー駆動イオンビー ムの質の改善を図ったうえで、例えばレーザー駆 動型のイオンビームの応用先として、がん治療用 の小型の加速器¹⁴⁻¹⁶⁾、または大型の重イオン加 速器施設のためのインジェクター¹⁷⁾、高速点火用 のビームへの応用¹⁸⁻²⁰⁾、等が提案されている。

超高強度レーザーを用いた不安定核取 り出し手法

あまり着目されていないが、レーザー駆動型の イオン加速手法は、被加速イオンが重ければ重い ほど、加速器を用いた従来型の加速手法に比して メリットが大きい. それは、前述のように、レー ザーと物質との相互作用によって100 TV/m 以 上もの高勾配の電場をミクロンメートル以下の極 小空間に生成できるという、レーザー駆動型のイ オン加速手法の最大の特徴に起因する. この高勾 配電場により重イオンの内核電子をも一気に引き 剥がし、かつ同時に高エネルギーにして引き出せ るため、極めてコンパクトな多価重イオン源が実 現できる. さらに、この「イオン化および加速」 の両ステップを、レーザーのパルス幅程度(数十 フェムトから数百フェムト程度)のごく短時間の 間に実現できるという点も、従来型のイオン源に は存在しない画期的な特徴である.

レーザー駆動型イオン加速の特徴をまとめる と,

1) 従来型の技術では不可能な 100 TV/m を超 える高勾配の電場をミクロンメートル以下 の極小空間に生成,かつイオンの加速を達成 する.これにより,重元素のイオン源の小型 化が可能

- 2)レーザーのパルス幅程度の数十フェムト秒時間内で多価重イオンの生成、および加速が可能
- 3)加速イオン核種は、照射ターゲットに依存す るため、照射ターゲット材料を変えるだけで どのようなイオンビームでも容易に加速可 能

となる.

以上のような特徴を考えると、例えばターゲッ トが安定核ではなく、不安定核で構成されていた としても、または、ターゲットが非常に重い重イ オンで構成されていたとしても、レーザーを用い ることで問題なく引き出し得ると容易に想像がつ く、例えば、薄膜ターゲットに対して、従来の加 速器技術を駆使して、これまで地球上で実際観測 することができなかった短寿命の重元素を、従来 の加速器技術を駆使した元素合成により生成す る. そして、それらが崩壊する前に、超高強度レー ザーを照射することによって, 瞬時に多価状態に すると同時に高エネルギー状態にして取り出すこ とが可能である^{21,22)}. 超高強度レーザーによる 重イオン加速技術の既存技術に対する特徴を鑑み ると、短寿命核の取り出しおよび非常に重い元素 の取り出しに向いている. すなわち既存技術で実 現不可能な実験を、超高強度レーザーの技術を融 合させることで実現できれば、原子核フロンティ アにおける新たな基盤技術をもたらし、新しい物 理的発見や原子力エネルギー産業に有用な成果が 期待できる (図1).

図1 超高強度レーザーと既存加速器技術を融合させた新 しい加速器のイメージ

4. 実証実験

量研関西研にある J-KAREN レーザーシステ ム²³⁾ (2018 年 現 在 アップグレードされて J-KAREN-P と改名)を使用して,実際に重イオ ンを引き出して加速できるかどうかを実験的に調 査した.

イオンを電離,かつ加速するための超高強度電 場を生成するには,用いるレーザーとターゲット との相性があるため,実際の実験によって極高強 度電場が立つか否かを加速されて飛び出してくる 陽子線をプローブとして用いて手法を決定する. 超高強度レーザーパルス,といっても,理想的な ガウシアン分布を持つパルスがやってくるわけで はなく,プリパルスと呼ばれる低強度のパルスや, 低強度の連続成分が存在する(図2(c)左). これらのレーザーの時間波形すべてが.レーザー

図2 実験の概要

- 7 —

(a)加速された鉄イオンの価数が少なくとも25価まで進んでいることを示すX線結晶分光器の結果.
(b)加速された鉄イオンを固体飛跡検出器で検出後、スペクトルを再構成した.最高で0.9 GeV/totalまで加速されていることを確認.
(c)実験のセットアップ.J-KARENレーザーパルスを固体薄膜ターゲットに照射し、加速されて取り出された鉄イオンをカプトン膜で検出し、鉄イオンの価数をX線結晶分光器で計測.

プラズマ相互作用に影響する. ちなみにこれらの 背景光と、メインパルスの強度比をコントラスト と呼び、コントラストが高い状態は、背景光が低 く,より理想に近いレーザーの時間波形であるこ とを意味する. 常温常圧下でのターゲットの物性 が、これらの低強度のパルスによって徐々に変化 し、プラズマ化していくが、その過程は完全に理 解されているわけではないため、最適なターゲッ ト材質や形状をシミュレーション等により予測す るにも限度がある.そこで、我々は、比較的価格 面で安価であり、扱いやすいアルミニウムター ゲットの厚みを変えながら、J-KAREN レーザー を照射し、加速される陽子線の最高エネルギーが できるだけ高くなる厚みを最適な条件として実験 的に決定した²⁴⁾. そのうえで, ターゲットの裏 面に鉄を薄く塗布し,不安定核の加速を模擬した.

波長 800 nm, エネルギー 8 J, パルス幅 30 fs のレーザー光を上記のターゲット上に伝送し, 最 高で 2×10^{21} Wcm⁻² のピーク強度に集光した. またレーザーのコントラストはナノ秒レベルの時 間領域で 10^{10} 程度であった.

この分野でよく用いられる分光法として、トム ソンパラボラスペクトロメーターがある.本手法 は、計測したいイオンビームに対して、同じ方向 に電場と磁場をかけ、磁場によってイオンのエネ ルギーを、電場によってイオンの価数を分別する 手法である²⁵⁾.比較的小型であるのが利点だが, 同じ価数と質量の比(Q/M)を持つ核子は同じパ ラボラ軌道を検出器上に描くため,鉄,アルミ, 炭素,酸素,陽子などが混ざって出てくる場合に はそれらの分別が困難となる. 高ノイズ環境化に おいても、ネオンよりも重い原子核にしか感度が ないカプトンを固体飛跡検出器に用いることで, 様々な種類のイオンが混ざって飛んできても、鉄 のみを検出できる. カプトンを何層も積層させる ことで、各層でイオンが落とすエネルギー分布に よってエネルギースペクトルを得る.本手法に よって得られた鉄のエネルギースペクトルを図2 (b) に記す. 最高で 16 MeV/u まで加速されて いることがわかる.また、加速された鉄イオンの 価数はX線結晶分光器によって計測したところ, 最高で25価であった(図2(a)).鉄の原子番号 が26番であることより、ほぼ完全電離に近いと ころまで電離が進んでいることがわかる.

5. さらに高効率の重イオン加速を目指して

さらに重いイオンを高エネルギーに加速するに は、いかに早期に重イオンを多価まで電離するか にかかるといえる.レーザープラズマ相互作用に おいて、イオンの電離過程として考えられるのは、 レーザーの電場によるイオン化、準静電場(加速 場)によるイオン化、高速電子による電子衝突電 離、高速電子等が励起するX線による光子電離 等がある.加速されて取り出されるイオンの電離 過程に支配的なのは、裏面における準静電場にお ける電離と考えられるためこの電場をいかに強く できるかが、多価イオンを生成するカギとなる.

図3に示すのは、例えばイオンを電場に曝した際に、原子核周りに存在するイオンが電離されるのに必要な時間(すなわち確率の逆数)をウラン (Z=92)に対して示したものである²⁶⁾.レーザーのパルス幅が30 fs 程度だとして、ターゲットの裏面に生成される電場が同等程度だと仮定すると、図中の薄緑色の部分の領域であれば、イオン化されることになる。例えば、10²¹ Wcm⁻²の集光強度のレーザーの電場の強度は約100 TV/mに相当し(図中赤■)、実際にレーザーのパルス幅内で電離が可能なのは57 価程度であることが予測される。すなわち、これよりも多価電離をするには、さらに高強度の電場が必要となり、それを生成するにはさらに高強度のレーザーが必要にな

図3 ウランの周りに存在する電子を電離するのに必要な 電場強度と電離に必要な時間をチャージ毎に示し た図.それぞれ10¹²,10¹³,10¹⁴,10¹⁵ TV/mの電 場に対して(ピンク,青,赤,黒の■で示す)プロッ トされている。例えば、10²¹ Wcm⁻² 相当の電場に おいては、パルス幅の30 fs 程度の時間内では、57 価までしか電離が進まないことがわかり、さらに 高強度レーザーが必要であると推測できる。

ることがわかる.

量研関西研においては、さらなる高エネルギー イオン加速を一つの目標として、2013年より J-KAREN レーザーの高度化作業を行ってきた. その高度化作業もほぼ完了し、2017年には世界 で最高強度のレーザー(10²²Wcm⁻²)を実験に 資する環境が整った^{27,28)}.また、2017年度後半 には、薄膜との相互作用実験を行う際に必要不可 欠な条件である高コントラストレーザーパルスの 条件が、レーザーの集光強度を保ったままター ゲット上に実現できるよう、時間波形の改善が行 われ、薄膜との相互作用実験環境がほぼ整った. 今後このレーザーを用いて重イオンの加速実験に 取り込んでいく予定である.

6. まとめと今後の展望

3章で述べたように超高強度レーザー技術を既 存の最新鋭の加速器技術や原子核実験技術を組み 合わせることで、今まで見ることができなかった ような核種の取り出しを可能とする新しい技術が 生まれる可能性がある.現状では,望む核種を望 む個数,望む状態で得るには,課題が多い.5章 で述べたように、例えばイオン化プロセス一つを とっても、重イオンを効率良くイオン化するため に必要不可欠な高強度のレーザーがやっと実験に 資する状況になったばかりで、これから制御する 手法を確立しなければならない. また, レーザー の強度が上がることで、重イオンのイオン化のメ カニズムも変化すると予想できるため、それらに ついても踏み込んだ研究が必要である.加速され て出てきたイオン価数の単一化、エネルギーの単 一化,空間分布など制御する項目は多いが,それ らを一つ一つ解決することで、レーザーのエネル ギー等を欲しいイオン種、価数、スペクトルのバ ンドに最適化できると考えている.

謝 辞

本論文を執筆するにあたって,多くの皆様のご 助力をいただいた. 高強度レーザー科学研究グ ループ,先端レーザー技術開発グループ, J-KAREN レーザー運転チームの各位,放医研加 速器工学部の各位および文献 21,22)の共著者 の方々に多大なるご助力をいただいた. ここに記 して感謝する次第である.

参考文献

- 1) M. Thoennessen and B. Sherrill: Nature, 473, 25 (2011).
- C.D. Bowman et al.: Nucl. Instrum. Methods A, 320, 336 (1992).
- 3) I. Tanihata et al.: Phys. Rev. Lett., 55, 2676 (1985).
- L.E. Williams: Am. Assoc. Phys. Med., 35, 3020 (2008).
- 5) E.M. Burbidge et al.: Rev. Mod. Phys., 29, 547 (1957).
- 6) J. Erler et al.: Nature, 486, 509 (2012).
- 7) http://isolde.web.cern.ch/
- 8) T. Motobayashi and H. Sakurai: Prog. Theor. Exp. Phys., 03C001 (2012).
- 9) H. Daido et al.: Rep. Prog. Phys., 75, 056401 (2012).
- 10) T. Esirkepov et al.: Phys. Rev. Lett., 92, 175003 (2004).
- 11) O. Klimo et al.: Phys. Rev. ST Accel. Beams, 11, 031301 (2008).
- 12) A. Macchi et al.: Phys. Rev. Lett., 103, 085003 (2009).
- S. V. Bulanov et al.: Phys. Rev. Lett., 104, 135003 (2010).
- 14) S.V. Bulanov and V.S. Khoroshkov: Plasma Phys. Rep., 28, 453 (2002).
- 15) S.V. Bulanov et al.: Phys. Usp., 57, 1149 (2014).
- 16) S.S. Bulanov et al.: Phys. Rev. ST Accel. Beams, 18, 061302 (2015).
- 17) A.V. Korzhimanov et al.: Phys. Rev. Lett., 109, 245008 (2012).
- 18) M. Roth et al.: Phys. Rev. Lett., 86, 436 (2001).
- V.Y. Bychenkov et al.: Plasma Phys. Rep., 27, 1017 (2001).
- 20) S.Yu. Gus'kov: Plasma Phys. Rep., 39, 1 (2013).
- 21) M. Nishiuchi et al.: "Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser", Phys. Plasmas, 22, 033107 (2015).
- 22) M. Nishiuchi et al.: "Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology", Plasma Phys. Rep., 42, 327 (2016).
- 23) H. Kiriyama et al.: Opt. Lett., 35, 1497 (2010).
- 24) K. Ogura et al.: "Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system", Opt. Lett., 37, 2868 (2012).
- 25) H. Sakaki et al.: Rev. Sci. Instrum., 84, 013301 (2013).
- 26) S. Kato et al.: Phys. Plasmas, 5, 292 (1998).
- 27) M. Nishiuchi et al.: "High contrast high intensity petawatt J-KAREN-P laser facility at QST", SPIE Proceedings, 10241, Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers III; 102410N (2017).
- 28) A.S. Pirozhkov et al.: "Approaching the diffractionlimited, bandwidth-limited Petawatt", Opt. Express, 25, 20486 (2017).

— 9 —