PROGRESS OF THE IFMIF/EVEDA PROTOTYPE ACCELERATOR IN THE BROADER APPROACH ACTIVITIES FOR FUSION ENERGY IN FY2008

Katsuhiro Shinto^{1, A)}, Christophe Vermare^{A)}, Hiroo Asahara^{A)}, Masayoshi Sugimoto^{A)}, Pascal Garin^{A)}, Sunao Maebara^{B)}, Hiroki Takahashi^{B)}, Hironao Sakaki^{B)}, Toshiyuki Kojima^{B)}, Shigeru O'hira^{B)}, Takayuki Kikuchi^{B)}, Takashi Kubo^{B)}, Kazuhiro Yonemoto^{B)}, Haruyuki Kimura^{B)} and Yoshikazu Okumura^{B)} ^{A)} IFMIF/EVEDA Project Team, ^{B)} Japan Atomic Energy Agency

2-166 Omotedate, Rokkasho, Kamikita, Aomori 039-3212, Japan

Abstract

Progress of the IFMIF/EVEDA prototype accelerator in fiscal year of 2008 is described. All the sub-systems of the prototype accelerator have started to be designed, settled the plan of the manufacturing and component tests and fixed the design parameters. As a result of the analysis of planning for the engineering validation of the IFMIF accelerator system, the project duration to be extended to the end of 2014 was approved by the 5th BA Steering Committee meeting held in May 2009.

IFMIF/EVEDA原型加速器の進捗状況

1. はじめに

国際核融合材料照射施設に関する工学実証及び工 学設計活動(IFMIF/EVEDA)^[1]は、2007年7月より 始まった「核融合エネルギーの研究分野におけるよ り広範な取組を通じた活動の共同実施に関する日本 国政府と欧州原子力共同体(EURATOM)との間の 協定(BA協定)」の3事業の1つである. IFMIF加 速器^[2]の低エネルギー部として試験される原型加速 器は、この事業で行われる主な工学実証活動の1つ である. この原型加速器では、ビーム強度125 mA、 ビームエネルギー9 MeVの重陽子イオン(D⁺)の連 続(CW)ビームを生成する予定である. また、こ のときに得られる原型加速器試験の成果を反映して IFMIF加速器システムの工学設計が行われる.

本稿では、青森県六ヶ所村にある国際核融合エネ ルギー研究センター(IFERC)内のIFMIF/EVEDA開 発試験棟と加速器機器群とのインターフェースや、 工学実証のために現在提案されている原型加速器の 総合試験計画について報告する.

2. IFMIF/EVEDA原型加速器

六ヶ所村のIFERCに設置及び試験される原型加速器は、電子サイクロトロン共鳴(ECR)型D⁺イオン源と低エネルギービーム輸送系(LEBT)を備えた入射器、ビームを5 MeVまで加速する高周波四重極(RFQ)リナック、9 MeVまでの加速を行うHalfWave Resonator(HWR)型超伝導リナックの初段(IFMIF実機では4段構成で設計されている)、高エネルギー輸送系(HEBT)及びCW運転時に最大1.2 MWのビームパワーに耐えうるビームダンプ、高周

波源などの機器群で構成されている.この原型加速 器は、フランスのCEA、スペインのCIEMAT、イタ リアのINFN、ベルギーのSCK・CENと日本のJAEAの 国際協力により調達される.この内、JAEAはRFQ リナック用の高周波結合器^[3]、加速器制御システム ^{[4] [5]}及び加速器建屋^[6]を担当する.加速器構成機器 群の各担当については図1に示す通りである.

- 2008年の主な活動として,
- 主リナックの超伝導化
- 原型加速器の各機器群の設計の進展
- 加速器構成機器群と建屋間のインターフェースの進展
- 日本での機器群の設置や試験のための日欧合同 安全作業会の設置

などが挙げられる.

図 1: IFMIF/EVEDA 原型加速器

¹ E-mail: katsuhiro.shinto@ifmif.org

2.1 IFMIF/EVEDA加速器システムに関する承認事 項

日欧の政府代表,専門家及びアドバイザーで構成 されるBA運営員会が、3事業の活動について承認を 与える.この委員会は、年2回(5月,12月)に行わ れ、各事業の全体計画、前年度の活動報告、次年度 の作業計画等について議論される.

IFMIF/EVEDA加速器システムに関しては,

HWR型超伝導リナックの提案

工学実証活動の2014年末までの延長

などが、これまでの委員会で承認された.

2.2 加速器建屋と加速器構成機器群とのインター フェースの進展

多くの機器はEUが調達し,一部の機器と六ヶ所 村の加速器建屋は日本が調達するため,原型加速器 の試験を行うために,インターフェースの議論は非 常に重要な作業の1つである.

これまでの議論によって得られた加速器機器群を 設置したときのIFMIF/EVEDA開発試験棟の3次元 CAD図を図2に示す.

図 2: IFMIF/EVEDA 開発試験棟の3次元 CAD 図

加速器建屋は平屋建てであり,加速器本体室は 1.5mのコンクリート壁で覆われている.放射線レベ ルを管理区域境界で基準値以下にするために,ビー ムダンプ設置後に,ダンプ周辺部には補助遮蔽を設 ける.加速器の試験を段階的に行う必要があり,物 品を容易に搬入できるように,搬入口は加速器本体 室の直ぐ横にある.電源室と加速器本体室の間には 地下ピットを設けて,RF導波管や同軸線,電気 ケーブル,制御ケーブル,信号ケーブルが通る構造 になっている.冷却水配管は,当初地下ピットを通 す設計であったが,管理区域内補助施設室-加速器 本体室間の壁を貫通するように設計変更した.

3. 六ヶ所IFMIF/EVEDA開発試験棟での原 型加速器総合試験計画

2007年7月より始まったIFMIF/EVEDA事業である が,現在までの2年間に原型加速器の各機器につい て設計が進められており,設計後に製作,EUの各 実施機関にて個別試験を行ってから日本へ輸送し, 青森県六ヶ所村IFERCのIFMIF/EVEDA開発試験棟に 設置して,ビーム加速を含めた総合試験を行う.

日本での原型加速器のビーム試験では、最大9 MeV/125 mAのD⁺ビームのエネルギー及び電流を CWで発生させるため、僅かなビーム損失でも装置 の放射化や、ビームパワーによる装置の破損などの 問題が生じる.また、限られた時間及び予算で効率 よく成果を出して、IFMIF加速器としての工学実証 を行わなければならない.これらの課題を考慮して、 許容される放射化レベルを見極め、一方で取得すべ き実験データを明確にし、将来のIFMIFの定常運転 への目処をつける必要がある.このため、加速器の ビーム試験を、

入射器のみ

②入射器+RFQリナック

③原型加速器全体

と段階的に行うシナリオが提案されている. ビーム 試験を段階的に行いながら,後段加速器の設置を 行っていくため,加速するイオン種としてH₂⁺を用 いて,CW運転方式のみではなく,パルス運転方式 を行うことで,装置の放射化を低減することを考え る必要がある.図3に各ビーム試験時のイオン種, ビームエネルギー,ビーム電流及び運転方式を示す.

イオン種	エネルギー	ビーム電流	運転方式 (Duty)
\mathbf{H}^{+}	100 keV	125 mA	パルス(<1%)
${\rm H_2}^+$		25 mA	· · · ·
			CW
D+		10 mA /125 mA	パルス(<1%)
		125 mA	CW

(a):入射器

イオン種	エネルギー	ビーム電流	運転方式 (Duty)
${{ m H_2}^+}$	5 MeV	25 mA	パルス(<5%)
D+		10 mA	パルス (<0.1%)
		125 mA	パルス (<1%)

(b): 入射器+RFQ リナック

イオン種	エネルギー	ビーム電流	運転方式 (Duty)
${\rm H_2}^+$	9 MeV	25 mA	パルス(<1%)
			CW
D+		10 mA /125 mA	パルス(<1%)
		125 mA	CW

(c): 原型加速器全体試驗時

図 3: 六ヶ所でのビーム試験時の運転方式

入射器のビーム試験時には、イオン源及びLEBT の動作確認及びEUでの試験結果の再現性を確認し、 加速器本体室の放射化を避けるために、D⁺ビームで はビーム品質の確認を短期間で行う. RFQリナック 設置後,高周波加速のためe/m比がほぼ等しい H_2^+ ビームでRF周波数や電磁石など加速器の調整を十 分行った後に、イオン種をD⁺に変えてビーム品質を 調べる.後段の超伝導リナックの設置を考慮して、 D⁺ビーム試験は低デューティ、短期間で行う.超伝 導リナック設置後、再度 H_2^+ ビームで加速器機器の 調整、ビーム品質を確認して、CW運転について実 証試験を行う.最後にイオン種をD⁺に変えて、パル ス運転で微調整、ビーム品質を調べた後に、大強度 CW運転を行うことで工学的にIFMIF加速器を製作 することが可能であることを実証する.これを考慮 して日本での総合試験計画は、図4に示すように 2012年夏より入射器の試験を開始して、2014年末に 工学実証活動を終了する予定である.

図 4: IFMIF/EVEDA 開発試験棟での原型加速器試験スケジュール

4. まとめ

IFMIF加速器システムの工学実証活動は,2007年7 月より約2年間が経ち,原型加速器の全ての構成機 器群の設計が進められてきた.日欧(欧州は4カ国 参加)の国際共同研究であるが,加速器建屋と構成 機器群のインターフェースの詳細がほぼ決まりつつ ある.

また,原型加速器の総合試験計画や方針の第一案 が示されてきた.段階的に加速器の総合試験を行う ので,装置の放射化を出来る限り抑えるために,D⁺ ビームを用いる代わりに,H₂⁺ビームを最大限活用 する必要がある.(スコープ,リスク,予算や時間 などの)プロジェクト管理の観点からも,総合試験 計画を今後更に最適化する必要がある.

参考文献

- P. Garin and M. Sugimoto, Fusion Engineering and Design, 83, 971-975 (2008).
- [2] K. Shinto *et al.*, Proceedings of the 5th Annual Meeting of Particle Accelerator Society in Japan and the 33rd Linear Accelerator Meeting in Japan, pp.255-258 (2008).
- [3] 前原直,本発表原稿集
- [4] 高橋博樹他,本発表原稿集
- [5] 小島敏行他,本発表原稿集
- [6] 久保隆司他,本発表原稿集