Emittance Measurement of a DC Gun for Smith-Purcell Backward Wave Oscillator FEL

Kenichi Nanbu, Masayuki Kawai, Kittipong Kasamsook, Akira Kurihara, Yoshinobu Shibasaki, Shigenobu Takahashi,

Hiroyuki Hama, Fujio Hinode, Mafuyu Yasuda Tohoku University Laboratory of Nuclear Science

1-2-1 Mikamine, Taihaku-ku, Sendai, Miyagi, 982-0826

Abstract

A Terahertz light source using Smith-Purcell Backward Wave Oscillator FEL(S-P BWO-FEL) has been studied at Laboratory of Nuclear Science, Tohoku University. The DC gun employs a high voltage of 50 kV to extract electrons, which is suitable to drive S-P BWO-FEL. A numerical simulation using a 3-D finite deference time domain (FDTD) method implies the S-P BWO-FEL oscillation at the terahertz wavelength region. Emittance measurement has been performed by means of the double slit method. The deduced normalized rms emittance is about 2π mm mrad. We will present the result of emittance measurement and analysis results.

スミス - パーセルBWO-FELのためのDC電子銃からの ビームのエミッタンス測定

1. はじめに

波長300µm近傍の電磁波はテラヘルツ光と呼ばれ 生体高分子解析やイメージング、分光などへの応用 が期待されている。テラヘルツ光源としてはレー ザーを用いたものと加速器を用いたものがあり我々 は加速器ベースであるスミスーパーセル後進波自由 電子レーザー(スミスーパーセルBWO-FEL)を用いた 高強度のテラヘルツ光源の研究開発を行っている[1]。

3次元シミュレーションからビームエネルギーが 50keV程度、規格化エミッタンス1πmm mrad以下の 電子ビームを用いた場合、テラヘルツ帯域のスミス ーパーセルBWO-FEL発振が予測されている。

ここではテラヘルツ帯域のスミスーパーセル BWO-FELを駆動するための電子銃のビームエミッ タンス測定結果について報告する。

2. スミスパーセルBWO FEL駆動用電子銃

導電性グレーティング表面付近のエバネッセント 波と電子ビームとの相互作用によるスミスパーセル BWO-FELの特性を3次元シミュレーションにより明 らかにした[2]。図1のようなグレーティングを仮定 すると、FEL発振に必要なビームパラメータは、 ビームエネルギーが50keV程度、ビーム電流は 100mA以上、規格化エミッタンス1πmm mrad以下で あることが明らかになった。これらのビームパラ メータを満足するために開発した電子銃は熱エミッ タンスを小さくするため小径陰極を採用し、エミッ タンス増大の原因となるグリッド構造を持たず、 ウェネルト電極と陰極間にバイアス電圧を印加し陰 極近傍の電位面を補正し線形な空間電荷効果を持つ 電子分布 (Kapchinskij-Vladimirskijビーム) を得る ことが出来るなどの特徴を持つ[3]。表1に電子銃の 仕様を示し、図2に電子銃の構造を示す。

図1 グレーティングのシミュレーションモデル

表1 電子銃の仕様

ビームエネルギー	50keV(MAX)	
ビーム電流	>300mA	
パルス幅(FWHM)	1-5µsec	
繰返し	300pps(Max)	
規格化エミッタンス	$<1\pi$ mm mrad	

図2 低エミッタンスDC電子銃の断面図

3. エミッタンス測定

3.1 ダブルスリット法

電子ビームのエミッタンス測定にはダブルスリッ ト法を用いた。図3に測定原理を示す。ビームライ ン上に設置したスリットで電子ビームを切り出す。 ビーム全領域の電流分布を測定することで上流側ス リット位置での電子ビームの位相空間分布を得るこ とが出来る。我々のエミッタンス測定装置では、上 流側のスリットは陰極から190mmの位置に設置した。 下流側のスリットは、上流側のスリットから142mm の位置とした。ビーム電流は最下流に設置したファ ラデーカップで測定する。スリット幅は上流、下流 ともに100µmで材質は厚み100µmのタングステン板 である。

図3 ダブルスリット測定法の原理

測定により得られた電流分布を(1)式に代入する ことでエミッタンスを算出することが出来る。

$$\varepsilon_{rms} = \sqrt{\left\langle u^2 \right\rangle \left\langle {u'}^2 \right\rangle - \left\langle uu' \right\rangle^2} \quad (1)$$

)

ここで <u²>, <u²>, <uu²>² は電流密度の重みをつけ た二乗平均である。

我々のエミッタンス測定装置ではスリット間の自 由空間の距離は142mmであるのでスリットの構造と 自由空間長より、位置分解能は0.1mm、角度広がり の分解能は1.41mradとなる。

4. 測定結果

4.1 エミッタンス測定

ビームエネルギー50KeV,ビーム電流300mA時のXエ ミッタンス測定結果を図4.1にYエミッタンス測定 結果を図4.2に示す。スリットのスキャンステップ は水平、垂直共に100µmである。

図4.1、図4.2から本来ビームが存在しない領域に もノイズが検出されていることがわかる。この本来 ビームが存在しない領域での信号の原因として高圧 電源のスイッチングに伴う測定系のグランド電位の 変動によるものとスリットと真空ダクトの間隙を通 過した電子ビームによるものであると考えられる。

図4.1 ビーム電流300mAのときのダブル スリット法によるX位相空間分布

図4.2 ビーム電流300mAのときのダブル スリット法によるY位相空間分布

4.2 エミッタンス解析

規格化エミッタンスの値はバックグラウンドノイ ズに強く影響を受けるため注意深く解析する必要が ある。ノイズをビームによる信号として解析してし まうと、真の値よりも大きなエミッタンスが算出さ れてしまう。そこでノイズによるエミッタンスの増 大を見積もった。

最初にバックグラウンドを差し引いた全電荷量を 基準とし(100%エミッタンス)その電荷量を基準 として閾値を設けてノイズをカットした(%エミッタ ンス)を10%毎に求める。図4.3と図4.4に電荷のカッ トレベルに対するエミッタンスの変化を示す。

カットレベル0%から50%までの領域はノイズによ りエミッタンスが大きくなっているため真のエミッ タンスとすることは出来ない。カットした電荷の中 には正しい信号も含まれているため直ちに50%エ ミッタンスを真のエミッタンスとすることは出来な い。電荷をカットしていない真のエミッタンスの値 を得るためにノイズの影響がないカットレベル50% から100%の領域において一次関数でフィッティン グし、電荷量をカットしていない点でのエミッタン スを求めた。この方法で求めたエミッタンスは上限 値であり真のエミッタンスよりは大きくなる[4]。

図4.4 カットレベルに対する垂直方向の 規格化エミッタンスの変化

エミッタンス解析結果を表2に示す。水平方向 2.26±0.07 [π mm mrad]、垂直方向1.858±0.05 [π mm mrad]と非常に小さなエミッタンスであることが わかった。図4.5に水平方向60%エミッタンスの位相 空間分布を示す。位相空間のテール部分はフォーカ スコイルの非線形成分であると考えられる。

Experimental time	Normalize rms emittance	
	$[\pi \text{ mm mrad}]$	
	X-emittance	Y-emittance
1^{st}	2.35	1.81
2^{nd}	2.23	1.90
3 rd	2.22	1.87
Average value	2.27	1.86
Error	± 0.07	+0.05

表2 ビーム電流300mAのときのダブルスリット法 によるエミッタンス測定結果

5. まとめ

スミスーパーセルBWO-FEL駆動用の電子銃の開 発を行っている。1πmm mrad以下の規格化エミッタ ンスを実現するため陰極を小型化し、グリッドがな い構造で陰極とウェネルト間にバイアス電圧を印加 し位相空間を制御できる構造とした。

ダブルスリット法により陰極から190mmのスリット位置でのエミッタンスを測定した。結果、水平方向2.27±0.07 [πmm mrad]、垂直方向1.86±0.05 [πmm mrad]以下であることが確認できた。シミュレーションでは同条件で1.38πmm mradであり、ほぼ同等の値が得られている。開発した電子銃はスミスーパーセルBWO-FEL用電子源として十分な性能を有していると考えている。現在ビーム輸送系の検討を行っている。

参考文献

- [1] K.Kasamsook, et al., "DEVLOPMENT OF A LOW EMITTANCE DC GUN FOR SMITH-PURCELL BWO FEL", Proc. FEL2007, Novosibirsk, Russia (2007) pp417-420.
- [2] H.Hama, et al., "DEVELOPMENT OF LOW EMITTANCE DC-GUN AND 3D-SIMULATION OF SMITH-PURCELL BACKWARD-WAVE OSILLATOR FEL", Proc. 第13回FELとHigh-Power Radiation研究会,京都 大学宇治キャンパス木質ホール (2007) pp7-9.
- [3] K. Kasamsook et al., "A Compact Low Emittance DC Gun Employing Single Crystal Cathode of LaB₆", FEL2006, Berlin, Germany (2006) pp.680-683.
- [4] 秋山和士, Master thesis, Tohoku University, (2008).