CONSTRUCTION AND EXCITATION TESTS OF SUPERCONDUCTING COILS FOR THE 28 GHz ECR ION SOURCE

Jun-ichi Ohnishi, Takahide Nakagawa, Tuneaki Minato^{A)}, Hiroki Okuno, Yoshihide Higurashi,

Kensuke Kusaka, Akira Goto RIKEN Nishina Center 2-1 Hirosawa, Wako, Saitama, 351-0198 ^{A)}Mitsubishi Electric Corporation 1-1-2 Wadamisaki-cho, Hyogo-ku, Kobe, Hyogo, 652-8555

Abstract

A superconducting coil assembly for a 28 GHz ECR ion source at the RIKEN RI beam factory was constructed and its excitation tests were carried out. The coil assembly consists of a set of sextupole coils and six solenoids to generate a confinement magnetic field. All the coils use a NbTi conductor and are bath-cooled in liquid helium. The maximum magnetic field on the coils is 7.4 T. The characteristic feature of this coil system is that the six solenoids can generate a flat region in the axial confinement magnetic field. A large radial magnetic field due to this solenoid configuration is accordingly provided on the sextupole coils, and an inhomogeneous, strong expansion force is generated on the sextupole coils; this makes the design and fabrication of the sextupole coil assembly difficult. The coil winding began at a factory of Mitsubishi Electric Corporation in January 2008. After all the coils were wound and assembled, the excitation tests were performed in June 2008.

28 GHz ECRイオン源用超伝導コイルの製作と励磁試験

1. はじめに

理研RIビームファクトリーでは水素からウラン までのすべてのイオンについて核子あたり345MeV までのCW加速が可能である。とくにウランビーム は核分裂反応により新しいRIが多数生成されるた め、ビーム量の増強が緊急の課題となっている。イ オン源においてU³⁵⁺イオンの生成が必要であるが、 現在の18GHzECRイオン源では収量が少ないため、 28GHzECRイオン源の導入が決定された¹¹。28GHz ECRイオン源は、共鳴磁場は約1Tであり、ミラー磁 場は2~4T、横方向の閉じ込め用6極磁場もプラズマ チェンバー壁面において2T以上の磁場を必要とする ため、ソレノイドコイルと6極コイルは超伝導コイ ルを使用する。超伝導コイルは三菱電機において 2008年1月より巻線を開始し、6月に全コイルの組 立を終え励磁試験を実施した。

2. コイル配置と諸元

図1に28GHz ECRイオン源の超伝導コイルの配置 を示す。6個のソレノイドコイルSL1~SL6の内側 に6極コイルが置かれた構成で、6極コイルとソレ ノイドコイルの内径はそれぞれ197mmと340mmであ る。これらはCu安定化NbTi多芯線の密巻コイルで、 一体化されて液体ヘリウムにより浸漬冷却される。

図2に中心軸上のソレノイド磁場Bzと室温ボア (R=85.5mm) に置かれたプラズマチェンバーの内 壁面上(R=75mm)の6極磁場Byを示す。SL1~SL6 コイルは個別電源で励磁する。SL2とSL5はミラー

図2:磁場分布

Bz は中心軸上のソレノイド磁場、By はプラ ズマチェンバー表面(r=75mm)における6 極磁場を示す。

	SL 1	SL 2	SL 3	SL 4	SL 5	SL 6	6極コイル
内半径 (mm)	170	175	175	175	175	170	102
外半径 (mm)	250	220	220	220	220	250	142
長さ (mm)	135	75	35	35	75	100	1073
導体サイズ (mm)	0.82 x 1.15	0.82 x 1.15	φ1.09	φ1.09	0.82 x 1.15	0.82 x 1.15	0.82 x 1.15
銅比	1.3	1.3	6.5	6.5	1.3	1.3	1.3
ターン数	9124	2778	1305	1305	2778	6830	1216
電流 (A)	162	182	109	109	155	132	271
Bmax (T)	7.2	5.2	3.1	3.0	4.8	5.4	7.4 (6.5)
Ic (A)	203	298	229	233	278	223	349
Iop/Ic	0.80	0.61	0.47	0.47	0.56	0.59	0.78
インダクタンス(H)	34.0	4.0	1.0	1.0	4.0	20.0	6.9

表1:超伝導コイルの諸元

磁場を作っているSL1、SL6とは逆極性であり、中 央部の磁場平坦部を生成することができる。SL3と SL4は微調整用で極性変更可能である。一方、動径 方向の閉じ込め磁場は6極コイルで生成し、プラズ マチェンバーの内壁面(R=75mm)で2T以上とするこ とができる。図から分かるように、6極コイル中央 部に鉄の磁極(長さ330mm)を使用し、10%程度 磁場を増加させている。6極コイルの最大経験磁場 はSL1中心付近の外径側で与えられるので、その部 分には鉄磁極は用いない。また、6極コイル端部の 動径方向の電磁力を緩和するため、コイルを長くし てソレノイド磁場の影響を小さくしている。

表1にコイルの諸元を示す。超伝導線はCu安定化 NbTi多芯線を使用する。SL3とSL4は銅比6.5、 ¢1.09mmの丸型超伝導線、他のコイルは銅比1.3、 0.89mm x 1.25mmの平角超伝導線を使用する。当初、 6極コイルは内接半径102mmの円筒に沿った鞍型で 設計していたが^[2]、コイル巻線を容易にするためフ ラットなレーストラックコイルに変更した。この変 更による磁場の減少を補うため、断熱真空部の寸法 を削ってコイルの内接半径を98.5mmとした。ソレノ イドコイルの最大経験磁場は7.2T、6極コイルは 7.4T(線材と直角成分は6.5T)であり、臨界電流に 対する負荷率は80%を超える。

3. 6極コイルに働く電磁力と支持構造

図3に6極コイル直線部に働く電磁力を示す。Fr は動径方向、Ftはコイル直線部の拡張力を表す。拡 張力Ftは自己磁場だけではなくソレノイドコイルの 作る動径方向の磁場成分にもよるため、ビーム(Z) 方向の位置によって電磁力が大きく変化する。また、 6極コイルの極性によっても異なる。これらの電磁 力に対してコイルを強固に固定するため、6極コイ ル直線部は図4に示す断面構造を採用した。コイル に鉄磁極とステンレス製スペーサーを挿入した後、 三角形断面のチタン製スペーサーと共に組立て、そ の周りに o 0.65mmのステンレスワイヤーを580MPa の高張力で4層巻く構造とした。とくにSL1とSL2 の間(図3のZ=-20cm付近)はコイルの拡張力が極 性によって大きく異なるので(図4に電磁力の値を 示す)、外半径250mm、厚さ30mmのステンレスの 円盤でコイルを支持することによりコイル変形を抑

図3:6極コイル直線部に働く電磁力 Fr は動径方向の電磁力、Ft はコイルの拡張力を 示す。coil1 と coil2 は極性が異なる。

図4:6極コイル直線部の断面構造 補強用のステンレス製ディスクは SL1 と SL2 の間に設置される。

図5:6極コイル直線部の構造計算(ANSYS) 用モデル

図6:組立完了後のコイルスタック (A)は6極コイル補強用のステンレス板を示す。 (B)は6極コイル端部の動径方向の電磁力を支持 するリングを示す。

制する。コイルの変形と応力を計算するため、 ANSYS^[3]を用いた。図5に6極コイル直線部のモデ ルを示す。コイルは線材方向の弾性率を97GPa、横 方向を16GPaとして直交異方性材料として扱った。 冷却後のコイルの熱収縮量を0.5%ととると、バイン ドの張力は25%程度減少する。コイルはバインドの 張力と冷却時の熱収縮のため0.16mm内周側に変位 する。さらに励磁したときの変位量は0.03mm、コ イル内のせん断応力は最大7MPaと許容できる数値 であった。

4. コイルの製作

6極コイルは巻き線後、エポキシ真空含浸により 製作した。エポキシのコイル内部への浸透は試巻き コイルを切断して確認したところ極めて良好であっ た。一方、ソレノイドコイルは塗り巻きにより製作 した。これは主にソレノイドコイルの方が巻き線作 業が容易であることによる。図6に組立後のコイル スタックを示す。6極コイルの端部に働く動径方向 の電磁力はステンレス製のリングによって支持する。 6個のソレノイドコイルはコイル間に働く約80kN の反発力を支持するため、その内側と外側、計64 本のアルミ合金製のタイロッドで締め付けた。ここ では示さないが、6極端部とソレノイドについても ANSYSによる3次元構造計算を行い、設計寸法を 決定した。

5. 励磁試験

6極コイルとソレノイドコイルを組立てた後、汎 用クライオスタットを用いて励磁試験を行った。各 ソレノイドコイルはクエンチせずに設計電流値に到 達した。6極コイルの励磁結果を表2に示す。6極 コイルは単独の励磁では2回のクエンチの後(run#1, #2)、設計電流値に到達した(run#13)が、ソレノイド と6極コイルを同時に励磁した場合、いずれの場合 も6極コイルが設計より低い電流値でクエンチした。 ソレノイドコイルSL1、SL2を励磁した状態で6極

	1 // (= /	• > ~			[[]]][]][][][]][][]][][]][][][]][][][][]
run #	sextupole	SL1	SL2	SL5	SL6
design	272	162	182	155	132
1	189				
2	255				
3	90	136	183		
4	65	136	183		
5	73	136	183		
6	114	136	183		
7	70	136	183		
8	77	136			
9	109				132
10	220				92
11	204			155	132
12	230			132	112
13(NQ)	272				
14	258	146	164		
15	234			135	114
16	238			136	116
17	235	127	143		
18	256	137	154		

コイルを励磁した場合、65A(24%)から115A(42%)の 低い電流値でクエンチした(run#3~#7)。SL5、SL6を 先に励磁した場合も同様であった(run#9, #11)。これ らにおいてはクエンチ直前にコイルモーションと思 われる電圧波形が観測された。また、run#10は先に 6極コイルを220Aで励磁した状態でSL6を励磁した。 run#12とrun#14~#17ではソレノイドコイルと6極コ イルの電流値の比を一定にして同時に励磁したもの で、6極コイルのクエンチ電流が設計値の85%以上 に向上した。これは、電流ランプ中に電磁力の方向 が変化しないことによるものと思われる。クエンチ の理由は明らかではないが、コイル端部のワイヤー モーションなどが疑われるため、その部分の支持を 強化して再試験を行なう予定である。

6. おわりに

28GHz ECRイオン源用超伝導コイルの製作を行い 励磁試験を実施した。この超伝導コイルは6極とソ レノイドの複合コイルであり、6極コイルはソレノ イドコイル磁場により複雑な電磁力が作用する。こ のため、ANSYSを用いた3次元構造計算を精密に 行ってコイルの固定構造を設計した。励磁試験では ソレノイドコイルと6極コイルを同時に励磁した場 合、6極コイルが設計値の85%~94%でクエンチし た。今後、6極端部の固定構造を強化し再試験を実 施する予定である。

参考文献

- [1] T. Nakagawa et al., Rev. Sci. Instr. 79 (2008), 02A327.
- [2] J.Ohnishi et al., "ECRイオン源用超伝導コイルの設計", Proc. the 4th Annual Meeting of Particle Accelerator Society of Japan, Wako, Aug. 1-3, 2007.
- [3] http://ansys.com.

表2:6極コイル励磁試験結果 6極コイルにクエンチが発生したときの雷流値(A)