NEW HOM COUPLER DESIGN FOR ERL INJECTOR AT KEK

Ken Watanabe^{1,A)}, Shuichi Noguchi^{A)}, Hitoshi Hayano^{,A)}, Eiji Kako^{,A)}, Toshio Shishido^{,A)},

^{A)} KEK

1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

The development of superconducting cavities and cavity package for ILC and ERL project is under way at STF (Superconducting RF Test Facility) in KEK. The cell shape and the geometry of the coaxial HOM couplers for ERL injector 2-cell cavity were decided by following the basic engineering of the STF Baseline cavity. The STF Baseline HOM couplers have a problem at CW operation, which it is pick-up probe heating due to the RF load of the accelerating mode. To control the probe heating for ERL injector, the STF Baseline HOM coupler made improvement to reduce the RF load of accelerating mode. It is shown as following, (1) A high pass filter between the pickup and the notch filter, (2) The boss on the probe location of inner conductor.

The designed HOM couplers are two types (Antenna-type and Loop-type). The copper models were made to measure the RF performance. The fabrication of niobium 2-cell cavity with four HOM couplers was carried out and started the RF measurement in June 2008.

KEKにおけるERL入射器用HOMカプラの開発

1. はじめに

KEKでは現在ERL (Energy-Recovery Linac)の R&Dが進められている^[1]。ERL入射器はCWで運転 され、超伝導加速空洞(運転周波数1300 MHz、2セ ル空洞、目標加速勾配15 MV/m)が使用される^{[2],[3]}。 HOMカプラは電子バンチによって空洞に励起され る高次モード(Higher Order Mode)を空洞外に取り 出すための装置である。ERL入射器は100 mAの電子 ビームを連続加速するため、励起されるHOMパ ワーも当然大きくなるので、これを効率的に取り出 すためのHOMカプラは重要な開発要素である。空 洞からHOMを取り出す手段の一つとして、空洞の ビームパイプに同軸型のカプラを取り付け、HOM を空洞外部へ取り出す方法があり、ERLの入射器で は同軸型のHOMカプラを採用して開発をスタート することとした。この方式は、すでにSTF-Baseline 空洞^{[4],[5]}(以下、STF BL空洞)で研究開発の蓄積が あり、これをベースにHOMカプラの設計、製作を 行った。STF空洞のHOMカプラは構造上CW運転の 際、加速モードの負荷により、取り出しプローブ先 端に大きな表面電流が流れ発熱する問題があった。 ERL入射器用HOMカプラではこの発熱が小さくな るような設計として、ノッチフィルターの手前にハ イパスフィルターの追加、プローブ部の内導体に突 起を設けるなどの対策を施し、アンテナ型、ループ 型の2種類のHOMカプラを設計した^[6]。設計後、銅 モデルを製作し、RF性能の評価を行った。また、 2008年6月にHOMカプラ4機を装着したニオブ製2セ ル空洞が完成し、2セル空洞実機における高次モー ドの評価を行っている。

2. ERL入射器のためのHOMカプラの設計

2.1 CW運転におけるSTF BL HOMカプラのプローブ 発熱発生電界の評価

2006年2月から9月の間に行われたSTF BL空洞の縦 測定でプローブの発熱が観測された^[5]。この発熱は 加速モード負荷時(ノッチフィルターの構造上、プ ローブ周辺では磁場が最大になる) にプローブ表面 に流れる誘導電流によるものと考えられる(図1)。 縦測定では、プローブと内導体間のギャップを変え て測定した結果、ギャップ長と発熱発生電界との間 に関係があることが分かった。図1に使用したプ ローブ、図2に縦測定の結果を示す。その測定結果 を元にSTF BL単セル空洞モデルにて、電界強度に 対するプローブの表面電流値をHFSSで計算した。 このときのプローブの材質はニオブ材であり、 フィードスルーは京セラ製を使用し、螺子締めでプ ローブを固定している。計算から、2Kでは約 4000A/mの表面電流がプローブ表面に流れると、発 熱が起こることが見積もられた^{[5],[6]}。

図1:STF BL HOM couplerと使用したプローブ

¹ E-mail: kenw@post.kek.jp

図2:STF BL空洞における縦測定の結果

2.2 HOMカプラの設計

CW運転下でプローブの発熱を抑制するためには、 フィードスルーの熱伝導率を上昇させ、冷却能力を 向上させる方法^[7]、HOMダンピング能力を損なうこ となく、プローブへ掛かる加速モードの負荷を低減 させる方法が考えられる。後者の方法を選択した場 合、STF BL空洞の試験結果から、15MV/mのときプ ローブ表面電流値を4000A/m以下になるように設計 すればよいことが分かっている。ERL入射器用に設 計した同軸型HOMカプラを図3に示す。HOMカプラ は空洞内に電子ビーム通過時に励起されるHOMを 空洞の外へ取り出すためのPickup部と加速モードの 負荷を低減させるためのHigh pass filterとプローブ部 の内導体に設けた突起およびノッチフィルターで構 成される^[6]。

図4:ERL入射器用HOMカプラの周波数特性

今回、ERL入射器用としてAntenna-type、Loop-Type の2種類の設計を行った。銅製HOMカプラの周波数 特性の測定および計算結果を図4に示す。ノッチ フィルターのバンド幅(加速モードのQextが>2× 10¹¹になる幅)の測定も行った。バンド幅は Antenna-typeで4.6MHz、Loop-typeで5.2MHzであった。

2.3 プローブ表面電流値の評価

Antenna-typeおよびLoop-typeの表面電流値をHFSS で計算した。計算時にはHOMカプラの回転角(プ ローブの向き)に対する表面電流値の変化を見た。 計算結果を表1にまとめる。計算モデルを図5に示す。 HOMのダンピングをより強くするために、プロー ブと内導体間のギャップをSTF BL HOMカプラの 2mmから0.5mmと狭くした場合にて評価を行った。 Antenna-typeでは、15MV/mで1000A/mを達成した。 Loop-typeでは回転角によって加速モードとの結合が 変わるため、15MV/mで2050~680A/mの値であった。 両モデルとも4000A/mを下回っており、High pass filterと突起の効果が分かる。

図5:計算モデル・STF Baseline単セル空洞

表1 Antenna-typeとLoop-typeの電界強度に対する 表面電流値(単位[A/m] (カプラ角度[deg]))

我面电师爬	(+) TU	(ハノノ月及	[ucg]//	
Model	15MV/m	20MV/m	25MV/m	
Antenna	1000 (90)	1350 (90)	1650 (90)	
	1340 (0)	1800 (0)	2250 (0)	
Loop	2050 (-30)	2720 (-30)	3360 (-30)	
	2000 (0)	2770 (0)	3360 (0)	
	1360 (30)	1810 (30)	2230 (30)	
	960 (60)	1280 (60)	1580 (60)	
	680 (90)	910 (90)	1120 (90)	
Target: < 4000 A/m at 15 MV/m				
STF BL	4250 (0)	5600 (0)	7200 (0)	
プローブ条件:ギャップ0.5mm				
先端直径 φ 12mm				
空洞モデル:STF BL単セル空洞				

3. ニオブ製2セル空洞の測定

2008年6月にHOMカプラ4機(Antenna-type×2機、 Loop-type×2機)を装着したニオブ製2セル空洞^[3]が 完成した。以下にLow powerの測定結果をまとめる。

3.1. 加速モードの電界平坦度とモードの同定

ビーズ摂動法を用いて、加速モードの電界平坦度 と高次モードのモード同定を行った。加速モードの 電界平坦度を図6に示す。加速モードの電界平坦度 は加工直後で99.8%であった。したがって、プリ チューニングを行わずに、HOM測定に進んだ。表2 にモード周波数をまとめる。

図6:ニオブ製2セル空洞とTM₀₁₀-πの電界平坦度

3.2. HOM Qextの測定

各HOMカプラにおけるHOMのQextの測定を行った。HOMカプラ4機の合計の結果を表3に、各HOM カプラのQextの値を図7にまとめる。TE_{111-1,-2}および TM₁₁₀₋₁はQextが<1000であった。TM₁₁₀₋₂のみ3560で あった。TM_{011-1,-2}では、Antenna-typeが>10⁵と効果が 小さく、4機の合計でもQextは6150、7740と不十分 であった。測定した全てのモードに対してLoop-type の方が、強いダンピングを持っていた。TM₀₁₁に関 しては、Loop-typeが単体でQextが1×10⁴程度あるの で、Loop-typeを4機ないし5機装着することで、Qext を1000~2000程度にすることは可能である。

4. まとめ

今回、ERL入射器用HOMカプラの設計からニオ ブ製2セル空洞の測定まで行った。ERL入射器用 HOMカプラでは、High pass filterと内導体に設けた 突起の効果により、加速電界15MV/mにおいてプ ローブ表面電流値を2050A/m以下にすることが出来 た。ニオブ製2セル空洞のHOM QextはTE111-1,-2、 TM110-1で1000以下、TM110-2で3560であった。 TM011-1,-2ではQextが6150,7740とダンピングは不十 分であるが、Loop-typeを4機ないし5機装着すること で、ダイポールモードと共に改善することが可能で ある。ニオブ製2セル空洞の縦測定は2008年度に予 定している。 表2:モード周波数とHOMカプラ4機のQext

Mode	Frequency [MHz]	Qext (four couplers)		
TM010-1	1286.658	—		
TM010-2	1299.369	—		
TE111-1	1557.318	562		
	1566.676	409		
TE111-2	1581.873	148		
	1588.488	347		
TM110-1	1629.101	1010		
	1638.528	663		
TM110-2	1784.929	976		
	1801.461	3560		
TM011-1	2280.790	6150		
TM011-2	2308.947	7740		
プローブ条件:ギャップ0.5mm、先端直径φ12mm				
温度:室温				

図7:ニオブ製2セル空洞のHOM Qextの測定結果

参考文献

- H. Kawata, "Present status on ERL project", Proc. of 4th Annual Meeting of Particle Accelerator Society of Japan, Wako Japan 2007.
- [2] S. Noguchi et al., "Development of 2-cell SC cavity system for cERL-Injector at KEK", in this meeting.
- [3] コンパクトERLの設計研究, KEK Report 2007-7, 2.3 入 射器用超伝導加速器, p. 35
- [4] E. Kako et al., "Construction of the baseline SC cavity system for STF at KEK", Proc. Of the 2007 Particle Accel. Conf. (PAC-2007), June. 25-29, 2007, Albuquerque, NM, USA, pp. 2107-2109
- [5] K. Watanabe et al., "New HOM coupler design for ILC superconducting cavity", Nuclear Inst. And Methods in Physics Research, A, NIMA48580.
- [6] K. Watanabe, "New HOM coupler design for ERL injector at KEK", SRF2007
- [7] C. E. Reece et. al., "High Thermal Conductivity Cryogenic RF Feedthroughs for Higher Order Mode Couplers," PAC'05, Knoxville, May 2005, p. 4108.