DEVELOPMENT OF AN ACCELERATOR MASS SPECTROMETRY SYSTEM USING THE LARGE TANDEM ACCELERATOR AT THE UNIVERSITY OF TSUKUBA

Kimikazu Sasa^{1,A)}, Yasuo Nagashima^{A)}, Tsutomu Takahashi^{A)}, Keisuke Sueki^{A)}, Yuki Tosaki^{A)}, Michiko Tamari^{A)}, Takahiro Amano^{A)}, Toshiyuki Oki^{A)}, Shouzou Mihara^{A)},

Hiroshi Matsumura^{B)}, Norikazu Kinoshita^{B)}, Kotaro Bessho^{B)}, Yuki Matsushi^{C)}

A) AMS Research Group, Tandem Accelerator Complex, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

^{B)} Radiaction Science Center, KEK

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

^{C)} MALT, Department of Nuclear Engineering and Management, The University of Tokyo

2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Abstract

A multi-nuclide AMS system on the 12UD Pelletron tandem accelerator at the University of Tsukuba (Tsukuba AMS system) has been able to measure environmental levels of long lived radioisotopes of ¹⁴C, ²⁶Al, ³⁶Cl and ¹²⁹I by employing a molecular pilot beam method that stabilize the terminal voltage with 0.1% accuracy. In addition, we have been developing ³²Si and ⁴¹Ca AMS systems for future research programs. Several major improvements have been made to increase the sensitivity of the ³⁶Cl AMS system. The standard deviation of the fluctuation for the ³⁶Cl/Cl ratio is \pm 3 %, and the effective detection limit is better than 5 × 10⁻¹⁵. We have measured more than 500 samples in year including earth and environmental sciences with the Tsukuba AMS system. A detailed description of the Tsukuba AMS system is given and earth and environmental applications are also described briefly.

筑波大学大型タンデム加速器を用いた加速器質量分析(AMS)装置の開発

1. はじめに

筑波大学研究基盤総合センター応用加速器部門は、 12UDペレトロンタンデム加速器(ターミナル電圧12 MV)と1 MVタンデトロン加速器を有する国内有数 の複合タンデム加速器施設である。12UDペレトロ ンタンデム加速器は、国内2位の加速電圧性能を誇 る大型汎用タンデム加速器であり、建設当初は原子 核実験が利用研究の中心であったが、近年は加速器 質量分析法(Accelerator Mass Spectrometry: AMS)の利 用割合が約40%と最も多くなっている。AMSは、 環境試料中の極微量放射性核種を高い検出感度と確 度で測定可能な手法であり、近年では年代測定研究 の他、文化財、地球、環境、海洋科学などの分野で 広範囲な利用が始まっている。本報告では、筑波大 学の大型汎用タンデム加速器を用いたAMS開発研究 について紹介する。

2. 加速器質量分析法(AMS)

加速器質量分析法(AMS)^[1]は、1970年代後半より 開発が始まり、1980年代には実用化された。極微量 放射性核種のうち放射性炭素¹⁴C (T_{1/2}=5,730 yr)が年 代測定に最も多く使用されているが、¹⁴C測定では5 万年程度が古い試料としての限界であり、最近は もっと長半減期で環境トレーサーとして有望な¹⁰Be (T_{1/2}=1.51×10⁶ yr), ²⁶Al (7.16×10⁵ yr), ³⁶Cl (3.01×10⁵ yr), ⁴¹Ca (1.03×10⁵ yr), ¹²⁹I (1.57×10⁷ yr)等の宇宙線起源に よる放射性核種のAMS開発が盛んにおこなわれてい る。

AMSに用いられるタンデム静電加速器は負イオン を加速する。負イオンは荷電変換材(ガスや薄膜な ど)を通過後に正イオンに変換され、2段加速がおこ なわれる。通常の質量分析法で問題となる測定対象 核種の妨害イオン(同重体分子等)は、荷電変換材を 通過する際に分解遊離される。高エネルギーに加速 された測定対象核種のイオンは、静電及び磁場分析 器により、エネルギー及び運動量の選別がおこなわ れる。最終的には粒子検出器で、物質中のエネル ギー損失ΔEの差を利用して、同重体イオンや散乱 イオンと識別され、測定対象核種が1個単位で計測 される。エネルギー損失を利用するには最低、核子 当たり0.5 MeV以上の加速エネルギーが必要となる。

¹ E-mail: ksasa@tac.tsukuba.ac.jp

つまり重い放射性核種の識別には、それだけ高い加 速エネルギーが必要となる。日本では、AMS専用加 速器以外も含めると10機関で計12台のAMS装置が稼 動している。このうち、¹⁴C以外の放射性核種AMS 測定を定常的に実施しているのは、東京大(¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, ¹²⁹I)、氏本原子力研 究開発機構青森研究開発センター(¹⁴C, ¹²⁹I)である。

3. 筑波大学AMSシステム

筑波大学12UDペレトロンタンデム加速器は、 1975年にNational Electrostatics Corp. (USA)から導入 された縦型の大型汎用タンデム加速器である²。 ターミナル電圧は、2-12 MVの範囲において10 kV 単位で加速電圧可変であり、高度に制御されたイオ ンビームが提供可能である。9階に3台のイオン源装 置が設置されており、加速イオンは1階の分析電磁 石(ME/q²=200 Mev amu)により、2つの測定室に導 かれる。図1に筑波大学12UDペレトロンタンデム加 速器の断面図を示す。

図1:筑波大学12UDペレトロンタンデム加速器

筑波大学AMSシステムでは、²⁶AI, ³⁶CI及び¹²⁹Iの AMS測定を行っている^{[2], [3]}。大型タンデム加速器の 特徴を活かして、主に妨害元素との分離が難しい重 い極微量放射性核種の測定に的を絞っている。図2 に筑波大学AMSシステムの概略図を示す。Csス パッタ型負イオン源は、25試料自動交換が可能であ る。質量分析系は第2荷電変換膜、8°静電偏向器 (ρ=10 m, E/q=10 MeV/q)、45°分析電磁石、TOF検出 器、ガスΔE-E検出器から成り立つ。図3に筑波大学 AMSシステムの粒子識別用ビームラインの写真を示 す。AMS測定では、精密なビーム調整と加速器制御、 及び電源・電磁石などのシステムを構成する各機器 の高い安定性が求められる。12UDペレトロンタン デム加速器では、加速器下流の分析電磁石物点に設 置したスリットで得られるビーム電流値をフィード バックして、ターミナル電圧を制御している。その 為、筑波大学AMSシステムでは、独自に開発した同 重分子パイロットビーム法を用いている。これは、 測定対象の極微量放射性核種をビーム電流として計 測出来ないため、同重分子イオンを測定対象核種と 電荷対質量比を揃えて加速して、加速電圧の安定性 を保つものである。このパイロットビーム法により 大型タンデム加速器の電圧制御をおこない、これま でに¹⁴C,²⁶Al,³⁶Cl,¹²⁹IのAMS測定以外に³²Si,⁴¹Caの AMS試験開発等も実施している^[4]。表1に現在、主 に測定がおこなわれている²⁶Al及び³⁶ClのAMSシス テム現況を示す^[5]。

図2:筑波大学AMSシステム概略図

図3:粒子識別ビームライン

² http://web2.tac.tsukuba.ac.jp/uttac/

表1:	²⁶ Al及び ³⁶	Cl-AMSの概略

Trace isotope	26 A1 (T ₁₀ =7.1×10 ⁵ vr)	$^{36}C1(T_{12}=3.0\times10^5 \text{ vr})$
Tonoot motorial	$1 = (-1)^2$ (100 + 4 m	
l arget material	$Al_2O_3 + MgO_2 + Ag$	$AgCI + C_{60}$
Injection ion	²⁶ AlO ⁻	³⁶ Cl ⁻
Pilot beam	$^{26}MgO^{-}$	$^{12}C_3^{-}$
Reference ion	²⁷ AlO ⁻	³⁵ Cl ⁻ & ³⁷ Cl ⁻
Typical current of	1.5 μΑ	10 μΑ & 2.5 μΑ
reference ion		
Injection energy	115 keV	103 keV
Terminal voltage	10.2 MV	10 MV
Particle energy	78 MeV (²⁶ Al ⁷⁺)	100 MeV (³⁶ Cl ⁹⁺)
Detected ion	²⁶ Al ¹³⁺	³⁶ Cl ¹⁴⁺
Background	$^{26}Al/^{27}Al \!<\! 5 \times 10^{-15}$	${}^{36}\text{Cl}/{}^{35}\text{Cl} < 5 \times 10^{-15}$
Typical precision	5-10%	≤5 %
Number of targets	40 samples/year	400 samples/year

3. ³⁶Cl-AMSシステム

³⁶Cl-AMSでは、³⁶Cl⁻とともに¹²C₃⁻を加速して加速 電圧のスリット制御に使用している。ターミナルの 荷電変換炭素薄膜を通過後、ME/q² = 44.4 (MeV amu)となる³⁶Cl⁹⁺ (100 MeV)、¹²C³⁺ (33.3 MeV)を分析 電磁石で選択している。振分電磁石後のビームコー スでは、第2荷電変換炭素薄膜により³⁶Cl⁹⁺は³⁶Cl¹⁴⁺ に変換される。質量分析ラインの粒子識別系で ³⁶Cl¹⁴⁺を選択して、ガス検出器と半導体検出器から なるΔE-E検出器によりその個数が計測される。 ³⁵CI⁻と³⁷CI⁻については、イオン源下流の120°電磁石 で分析後、加速器に入射する前にマルチファラ ディーカップで電流値を計測している。試料の ³⁶Cl^{14+/35}Cl⁻ (counts/µC) 相対値と既知標準体の ³⁶Cl¹⁴⁺/³⁵Cl⁻相対値から試料の³⁶Cl/Cl比を求めて、未 知試料中の³⁶Cl濃度を計測する。これまでに新規計 測制御システムの開発などにより、測定効率の向上 が図られ、1ヶ月に1週間程度のマシンタイムにより、 年間約500試料のAMSが実施できるようになってい る。³⁶Cl/Cl同位体比で10⁻¹⁰から10⁻¹⁴の範囲で測定可 能であり、検出限界は5×10⁻¹⁵以下である。繰り返し 測定精度は±3%程度となっている。図4に³⁶Cl-AMS の標準試料(³⁶Cl/³⁵Cl=5.90×10⁻¹¹)と検出限界を確認す る為のブランク試料の2次元測定スペクトル結果を 示す。

図4:³⁶Cl-AMSの測定スペクトル.ガスΔE-E検出 器で測定された³⁶Cl¹⁴⁺(100MeV)の2次元測定スペ クトル.a)標準試料³⁶Cl/³⁵Cl=5.90×10⁻¹¹とb)ブラ ンク試料の測定結果.

4. まとめ

大型タンデム加速器を用いた加速器質量分析法 (AMS)の開発について紹介をおこなった。筑波大学 AMSシステムは加速器質量分析装置として国内最大 の規模を誇っており、重い放射性核種分析に有利で ある。特に³⁶CI-AMSは妨害となる³⁶Sとの分離が難 しく、高いターミナル電圧を有する筑波大学AMSシ ステムの特徴を活かす研究が進展している。これま でに広島・長崎原爆被ばく線量評価システムDS-02 の検証やJCO臨界事故調査などの原子力関連研究や 環境試料中の放射性核種分析研究などを実施してい る。また現在、南極ドームふじの氷床コア^[6]に含ま れる極微量の宇宙線生成核種³⁶CIの分析研究が進展 している。72万年といわれる氷床コア年代に関して、 新たなデータを提供できると期待されている。

Acknowledgements

本研究は、科学研究費補助金 基盤研究(A) (課題 番号19201003)、基盤研究(B) (課題番号18360043)、 基盤研究(B) (課題番号19300304)及びKEK加速器科 学総合支援事業(大学等連携支援事業)の支援により 実施している。

参考文献

- [1] 小林紘一,加速器質量分析法,日本物理学会誌Vol.53, No.12 (1998) 903.
- [2] K. Sasa et al., Nucl. Instrum. Methods Phys. Res. B259 (2007) 41-46.
- [3] Y. Nagashima et al., Nucl. Instrum. Methods Phys. Res. B259 (2007) 241-245.
- [4] T. Baba et al., Nucl. Instrum. Methods Phys. Res. B123 (1997) 183-185.
- [5] K. Sasa et al., Proceedings of the First East Asian Symposium on Accelerator Mass Spectrometry, UTTAC-74 (2006) 63.
- [6] H. Motoyama, Scientific Drilling 5, (2007) 41-43.