Harmonic generation of the FEL using NLO II^{*}

Ken Hayakawa^{1,A)}Toshinari Tanaka^{A)} Yasushi Hayakawa^{A)}, Keisuke Nakao^{A)}, Kyouko Nogami^{A)},

Takesh Sakai^{B)},Isamu Sato^{B)}

^{A)} Institute of Quantum Science, Nihon University 24-1, Narashinodai, 7-chome, Funabashi-shi, Chiba, 274-8501

^{B)}Advanced Research Institute for the Science and Humanities, Nihon University

12-5, Goban-cho, Chiyoda-ku, Tokyo 102-8251

Abstract

Preliminary experiments for generating harmonics of the free electron laser by using NLO(nonlinear optical crystals) have been performed at LEBRA. We used BBO(β -BaB₂O₄)crystals for SHG(second harmonic generation) and FOHG(forth harmonic generation). Measured conversion efficiencies are about 30% for the SHG and about 10% for the FOHG between the fundamental wavelengths from 1.8µm to 2.2µm. The optimization of the optical system of the injection beam line is discussed.

非線形光学結晶を用いたFEL高調波の発生II

1. はじめに

日本大学電子線利用研究施設では、可視近傍の レーザー光の需要に応えるため、非線形光学結晶に よるFEL高調波発生を試みている。前回報告したよ うに[1]、KTP(KTiOPO₄)を使用した実験では、位相 整合条件がTypellであったため、LEBRA-FELの短パ ルス性(200~300fs)故、偏光の向きによって異な る群速度のために、結晶中で相互作用すべき光が、 空間的に乖離し、第2高調波発生については、波長 範囲1.35~1.8µmにおいて、~10%の変換効率を得た ものの、第3高調波に関しては、非線形高調波の10 倍程度の出力しか得られず、第3高調波については 実用的といえなかった。この経験を踏まえ、結晶を BBO(β-BaB₂O₄)に換え、実験と光学系の検討を行っ た。この結晶は波長0.2~3µmの範囲でほぼ透明なた め、広範囲に亘って、波長変換に使用することがで きる。また、TypeIの位相整合条件で使用できるた め、KTPで起きたような入射光のパルスの乖離は発 生せず、高い変換効率が期待できる。但し、許容角 が小さく、ウォークオフ角が大きいため、光学系の 構成には注意が必要である。本計画の目標は、FEL の基本波の波長1.4µmから2.6µmに亘って、大出力 の第2及び第4高調波を発生させることである。さ すれば、0.35µmから、6µmまで、切れ目無く連続可

^{*} 本研究は文部科学省学術フロンティア推進事業(継続)

変波長のレーザー光を供給できるようになる。ここ ではBBOを広い波長範囲で使用した場合の特性を知 るための予備実験と、最大の変換効率を得るための 光学系の検討結果について記す。

2. BBOの特性

今回使用した非線形光学結晶BBOは単軸結晶で、 図1[2]に示すように、非常に広範囲の波長領域にわ たって、透明な物質である。Type Iの位相整合条件 によって第2高調波を発生させる場合(SHG)、基本波 は、正常光線になるような偏光の向きで入射する。 基本波の波長と位相整合角の関係は図2に示すよう になり、0.41µmより波長の長い領域で、SHGが可能で あるが、一つの結晶で、広い波長範囲を使おうとす れば、0.7µm以上の領域を使うのが妥当であろう。

3. 予備実験

実験のセットアップを図3に示す。2枚の凹面鏡 により、焦点距離がほぼ1mになる集束系を構成し、

図 2、Type I SHGにおける基本波の波長と位相 整合角の関係。

(平成17~19年度)の支援を受けて行った。

¹ E-mail: <u>hayakawa@lebra.nihon-u.ac.jp</u>

図3.実験のセットアップ.。

FELのウエストのできる位置に第2高調波発生用 のBBOを置いた。実験室に於いて、ポートを出た FELは偏光面が水平方向になる直線偏光なので、 チューニングの回転軸も水平方向となる。BBOを 通過した基本波と発生した第2高調波はこの後発 散するので、これを凸レンズ(BK7)により再び集光 し、そのウエストの位置に第4高調波発生用の BBOを置いた。第2高調波の偏光の向きは基本波 に対して垂直になる。第4高調波は第2高調波の2 倍波として発生するので、BBOのチューニング軸 は垂直である。第4高調波の偏光の向きは、再び 水平方向になる。発生した高調波は分散プリズム により分光し、パワーメータ (サーモパイル) に て各成分のパワーを測定した。変換効率の評価は 光学系を通過することによる損失を考慮して、そ の発生点におけるパワーに換算して求めた。今回 測定した波長1.8~2.2µmでは変換効率は表1に示 すようになった。値に幅があるのは、主に、FELの パワーレベル変動のためで測定系の改良により精 度を高める予定である。この光学系による実験で、 マクロパルス当り~7mJのFELに対して、およそ 30%の効率で第2高調波が、約10%の効率で第4 高調波が得られた。これはすでに十分実用に供せ られる強さである。

表1.変換効率の実験値、energyはマクロパルス当 りのFELエネルギー

波長	energy.		効率(%)	
(µm)	mJ/P	$1 \Rightarrow 2$	$2 \Rightarrow 4$	$1 \Rightarrow 4$
1.8	~ 4.7	20 ~ 29	26 ~ 31	5~9
2.0	~ 6.6	33 ~ 36	18 ~ 32	6 ~ 11
2.1	~ 7.5	28 ~ 36	23 ~ 36	6 ~ 13
2.2	~ 7.5	34 ~ 41	25 ~ 38	9~16

4. 入射光学系

予備実験ではあまり考慮していなかったが、前述 のごとくBBOによる高調波発生では、入射光に対す る許容角が小さいことと、ウォークオフ角の大きい ことを考慮して、光学系を設計しなければならない。 単一モードのレーザー光では、回折により、最小 スッポトサイズと広がり角の積は波長によって決 まってしまうので、可能な組合せについて変換効率 が最大になるような光学系について検討した。但し、

- ここでは光学系の収差は考慮していない。
- 4.1 許容角と位相整合条件

TypeIの位相整合による第2高調波発生の場合、 基本波は正常光線となる偏光の向きで入射し、第2 高調波の偏光の向きはこれに垂直な異常光線となる。 正常光線と異常光線に対する屈折率をn_o, n_eで表現 し、基本波と第2高調波に対しては添え字、1、2を 添付することにすると、位相整合条件は整合角をθ₀、 基本波の波長をλとすると

$$\Delta k = \frac{4\pi}{\lambda} \left(n_{e2}(\theta_0) - n_{o1} \right) = 0$$

である。第2高調波の屈折率は角度の関数として、

$$n_{e2}(\theta) = n_{o2} \sqrt{\frac{1 + \tan^2 \theta}{1 + (n_{o2}/n_{e2})^2 \tan^2 \theta}}$$

となる[3]。位相整合角からの変位Δθと位相不整合 Δkの関係は、上記の屈折率を位相整合角の近傍で、 展開することにより得られる。すなわち、

$$\Delta k = \frac{4\pi \tan \theta_0 \left| 1 - (n_{o2}/n_{e2})^2 \right| n_{e2}(\theta_0)}{\lambda \left(1 + (n_{o2}/n_{e2})^2 \tan^2 \theta_0 \right)} \Delta \theta$$

となる。比例係数をgとおく、即ち、 $\Delta k = g \Delta \theta$.。 変換効率はまた、エネルギー密度と有効光路長の2 乗に比例する。単一モード(最低次)のレーザー光 を集束させた場合、ビーム半径 ω 、広がり角 $\delta \theta$ 、波長 λ の間には次の関係がある。

$$\omega = \omega_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}, \quad \omega_0 = \sqrt{\frac{\lambda z_R}{\pi}}, \quad \delta\theta \,\omega_0 = \frac{\lambda}{\pi}$$

ここで、 a_0 はウエスト位置におけるビーム半径、 Z_R はレイリー長である。ガウス分布を仮定すると角 度の広がりの分布は、 $u(\theta)$ は

$$u(\theta) = A_0 e^{-\left(\frac{\theta}{\delta\theta}\right)^2}$$

となる。ここでA₀は規格化定数である。位相整合角からのずれの変換効率に及ぼす影響を取り入れるた

めには
$$\left(\frac{\sin \Delta k L/2}{\Delta k L/2}\right)^2$$
をこの分布に乗じて積分すれば

よいのだが、この積分の結果は複雑で見通しが良く ない。代わりに同じ半値幅を持つガウス分布を用い る。すなわち、

$$y(\theta) = e^{-\left(\frac{\Delta kL/2}{s}\right)^2}$$

を使う。ここで*s*=1.67144である。先に求めた関係 を使うと、

$$y(\theta) = e^{-\left(\frac{\theta}{\alpha}\right)^2}$$

となる。ここで $\alpha=2s/(gL)$ である。ビームは軸対称で、 方位角を ϕ とすると有効なパワー $P(\lambda)$ は

$$P(\lambda) = A_0 \int_{0}^{\infty} \int_{0}^{\pi} y(\theta) u(\theta) \theta d\phi d\theta = \frac{\alpha^2}{\alpha^2 + \delta\theta^2}$$

となる。これを空間密度に変換するために、ウエス ト位置及び結晶端におけるビームの断面積の平均値 で割ると、

$$p(Z_R) = \frac{2P(\lambda)}{\omega_0^2 + \omega^2} = \frac{2}{\omega_0^2} \frac{(\alpha^2/(\alpha^2 + \delta\theta^2))}{(1 + 1 + (L/2Z_R)^2)}$$
$$= \frac{2\pi}{\lambda} \frac{(2s/gL)^2}{((2s/gL)^2 Z_R + \lambda/\pi)(2 + (L/2Z_R)^2)}$$

となる。変換効率はこの量と L^2 の積に比例する。こ の関数は、L = 5mmの結晶に対して、第2高調波発 生が可能な波長帯域において、 $Z_R=0.01\sim0.025$ mで最 大値を持ち、 Z_R の増加に従って緩やかに減少する。 波長0.7 μ m では0.005m< Z_R <0.3mの範囲で、波長 2.6 μ mでは0.005m< Z_R <0.07mの範囲で最大値の90% 以上の値を持つ。また、この関数は概ね L^2 に反比例 するため変換効率の最大値はあまり結晶の長さに依 存しない。但し、Lが小さいほど有効な Z_R の範囲は狭 くなる。

4.2 ウォークオフ角

非等方性結晶内で異常光線は波面の進む向きとエ ネルギーの伝播する向きが異なる。入射光に対して、 高調波のエネルギー伝播の向きがなす角度をウォー クオフ角と呼んでいる。BBOにおいてTypeIのSHG の場合、この角度は、波長0.7μmから2.6μmの範囲で、 4.3°から2.8°の範囲で変化する。基本波と高調波が 乖離すると変換効率が低下する。ウォークオフ角の 影響を見るために、以下のような考察を行う。すな わち、ビーム断面の形状は基本波と第2高調波で同 じとし、基本波の最小ビーム径ωになると仮定する。 結晶への入射点で両者が一致していて、結晶の終端 で、2∞0だえけ位置がずれる場合のレイリー長を計算 する。ウォークオフ角をρとするとρL=2ω0より、

$$Z_R = \frac{\pi L^2 \rho}{4\lambda}$$

である。これは波長0.7 μ mの場合、 $Z_R = 0.16m$ 、波長 2.6 μ mの場合、 $Z_R = 0.026m$ になる。

4.3 群速度非整合

前に述べたように、Type I のSHGの場合入射光の パルスが空間的に乖離して、変換効率がゼロになる ようなことはないが、高調波との群速度の違いによ り、結晶中を進むに従って、パルスの中心が前後にず れ、高調波のパルス幅が入射波のパルス幅より広く なり、また変換効率が光路長の2乗に比例しなくな る。波長1.5μmにおいて基本波と第2高調波の群速 度がほぼ等しくなり、これより短波長側では高調波 の方が高速になり、長波長側では基本波の方が高速 になる。その差は波長0.7μmでは-270fs/mm、2.6μm では+124fs/mmである。FELのパルス幅は現状では 200~300fsであるから、例えば、2.6µmのFELに対して は、長さの2乗に比例する効率が得られる長さは 2mm程度になるので、1.5µmの光に比べ、この理由だ けで、効率は半分以下になり、高調波のパルス幅は 倍以上になと思われる。この問題を回避するには、 結晶の長さを短くし、スッポト径を小さくして、エネ ルギー密度を上げればよいのであるが、結晶に与え るダメージは大きくなる。

4.4 入射ビーム

自由電子レーザーは光共振器の一方の鏡の中心に 穿たれた貫通孔を通して取り出された後、平行ビー ムにされ、実験室まで運ばれる。平行化されたビー ムの半径rはおよそ1.54λ/ρである。ここでρは鏡にあ けられた取り出し穴の半径である。現在この値は 0.25mmなので、r =6160λ[m]である。平行化された ビーム径をウエストの値とみなせば、レイリー長を 求めることができ、以下のようになる。

$$6160\lambda = \sqrt{\frac{\lambda Z_R^*}{\pi}}, \quad Z_R^* = 6160^2 \,\pi\lambda \approx 120 \times 10^6 \,\lambda$$

集束光学系の焦点距離をfとすると、 Z_R^* >> Z_R の場合、 $f^2 = Z_R^* Z_R$ なる関係が成り立つので、この関係から、 入射光学系の焦点距離を決めればよい、但し、結晶中 では焦点距離が屈折率倍だけ長くなり、波長が屈折 率分の1だけ短くなることを考慮しておかなければ ならない。

5. まとめ

BBOによる高調波発生の予備実験から、基本波の 波長1.8µm ~2.2µmに対して、第2高調波は30%程度 の、第4高調波は10%程度の変換効率が得られ、少な くともこの帯域では、実用化レベルの強度が得られ ることを示した。入射光学系の検討から、LEBR-FEL が短パルスであることを考慮すれば、短い結晶を用 いるのが、変換効率の点からは有利であることが明 かになったが、エネルギー密度が高くなるため、結 晶に損傷を与える危険性は大きくなる。理想的な光 学系を構築するには、FELのように短パルスの光が バースト的に照射されるような場合の損傷の閾値に ついての知見が必要である。

参考文献

- [1] K.Hayakawa, et al "Harmonic generation of the FEL using NLO II",Proc. of the 4th Annual Meeting of Particle Accelerator Scoiety of Japan and the 32th Linear Accelerator Meeting in Japan, 2007 Wako Japan, pp583-585
- [2] D.Eimerl, Ldavis, S.Velsko, E.K.Graham and A.Zalkin "Optical, mechncal, and thermal properties of barium borate", J.Appl. Phys. 62(5), 1 1968-1983, 1987
- [3] VV.G.Dmitriev, G.G.Gurzadyan and D.N.Nikogosyan "Handbook of Nonlinear Optical Crystals", Third edition, Springer, Moscow 1999