STATUS OF A PULSED QUADRUPOLE MAGNET INJECTION AT THE PF-AR

Hiroyuki Takaki^{1,A)}, Norio Nakamura^{A)}, Yukinori Kobayashi^{B)}, Kentaro Harada^{B)}, Tsukasa Miyajima^{B)}, Akira Ueda^{B)},

Shinya Nagahashi^{B)}, Takashi Obina^{B)}, Kensei Umemori^{B)}, Miho Shimada^{B)}

^{A)} ISSP, Univ. of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

^{B)} KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Abstract

Since a beam injection using a pulsed quadrupole magnet (PQM) was achieved at the Photon Factory Advanced Ring (PF-AR) in September 2004, we have continued the beam injection study to accumulate the beam up to a current of 60 mA. We observed that the saturation of the stored beam current in the PQM injection was strongly dependent on a total rf voltage. In order to investigate the dependence, various experiments were carried out. Through the experiments using a turn-by-turn beam position monitor, a beam scraper and a fast gate camera, we found that the dependence was generated by the instabilities coupled with the excitation of the PQM, which formed a long tail of the beam profile and resulted in the beam loss of the stored beam.

PF-ARにおけるパルス4極電磁石を用いた入射システムの現状報告

1. はじめに

Photon Factory Advanced Ring(PF-AR)の入射時 におけるビーム不安定性を克服し、大電流単バンチ ビームを蓄積するため、様々な試みがこれまで行わ れて来た。その一つとして、通常のバンプ軌道を用 いた入射方式に代わる、パルス4極電磁石(Pulsed Quadrupole Magnet: PQM)を用いた新しい入射方式 を提案し、そのシステムの開発も行った。そして 2004年にこのシステムをPF-ARにインストールし、 実ビームを用いた実験を行い、PQMによる入射・蓄 積に成功した[1]。このPQMを用いた新しい入射シス テムは、バンプ軌道の不整合が原因で入射時に発生 する蓄積ビームのコヒーレント双極振動を殆ど発生 させることなく入射が可能になることから、当初は PF-ARのビーム入射に有効であろうと考えられた。 しかしながら、この入射システムは大電流単バンチ ビームに対しては、従来のキッカーを用いた入射シ ステムよりも逆に入射が困難になるという結果に なってしまった。

何回かの実験を経て、最終的にはPF-ARに6台あ る高周波加速空洞の総加速電圧(Vc)を2MVに調節す ることで、目標とする蓄積ビーム電流値60mAを実現 した(図1参照)。しかし、Vcを4MVに設定すると 飽和蓄積ビーム電流値(それ以上積み上げることの できない最大蓄積電流値のこと)は約25mAと半分以 下にまで減少し、Vcに非常に強く依存していること も判明した。一方通常入射の場合、飽和蓄積ビーム 電流値はVcが2MVから5.5MVの広い範囲で60mAに達し ている(通常入射はVcが3.5MVで行われる)。本報 告では、この高周波加速空洞の総加速電圧依存性の 原因を解明するために、これまで行ってきた実験結 果について述べる。

2. 測定

2.1 蓄積ビームの損失率

入射時に蓄積ビーム電流が飽和した際に、蓄積 ビームに一体何が起きているのかをまず調べた。図 2はVcが4MVの時にPQMを使って5Hzの繰り返しで入射 した場合の蓄積ビーム電流値の変化の様子を示して いる(図1の入射の繰り返しは12.5Hz)。蓄積ビーム 電流値が11mA以下の時は入射レートが約0.1mA/秒で あったのが、徐々に入射レートが下がりやがてゼロ

図1:PF-ARに6台ある高周波加速空洞の総加速 電圧(Vc)と入射時に蓄積ビーム電流が飽和する 電流値との関係。赤丸はPQMによる入射、黒丸は ローカルバンプを用いた通常の入射。PF-ARの蓄 積電流値のリミットは60mAに設定してあるた め、飽和蓄積電流値は60mAを超える事がなく平 坦な部分ができる。それぞれの入射は共に 12.5Hzの繰返しで行った。

¹ E-mail: takaki@issp.u-tokyo.ac.jp

図2: PQM入射における蓄積ビーム電流値の変化。 Vcは4MV。蓄積ビーム電流値がおよそ13mAで飽和状態に達する。この時入射レートは、0.10mA/秒であり、入射の繰り返しは5Hzである。

図3: 入射ビーム無しの状態で蓄積ビームをPQMで 励磁した場合の、蓄積ビーム電流値とビーム損失 率との関係。黒丸はPQMを励磁した場合で、赤丸は 励磁した場合。ある閾電流値を超えると、PQMは急 激に蓄積ビームを落とし始める様子が見える。

になって蓄積ビーム電流値が飽和している。入射の 繰り返しは5Hzであるので、12.5Hzで入射した図1 に比べて飽和蓄積ビーム電流値が低くなっている。 図3は入射ビーム無しの状態で蓄積ビームをPQMで励 磁した場合のビーム損失率である(繰り返しは同じ く5Hz)。PQMを励磁しない場合には、蓄積ビームの 損失は全くなく、PQMを励磁した場合には、蓄積 ビーム電流値11mA以上になるとビーム損失率が急速 に増加した。蓄積ビーム電流値が13mAにおけるビー ム損失率は約0.1mA/secであり、この値は入射レー トと殆ど等しい。したがって、蓄積ビーム電流値が 飽和するのは、入射ビームが捕獲さにくくなるので はなく、PQM自身が蓄積ビームをロスさせているの が原因であると判明した。

2.2 いつビームを落とすのか

では、蓄積ビームはどのタイミングで失われてい るだろうか。そこで、PQMの励磁後、何ターン目で 蓄積ビームが失われたのかを調べるために、ビーム 位置モニタを使って、ターン毎のコヒーレントな双 極振動とビーム電流を測定した。蓄積ビーム軌道を PQMの中心から僅かにずらすことによって水平方向 のコヒーレントな双極振動が発生するようにして PQMの励磁のタイミングを得た。図4(a)からPQMの

図4:4 電極のビーム位置モニタで観測された水平 位置(a)と4 電極の合計から算出した蓄積ビーム電流 値(b)。水平振動より PQMの励磁タイミングは、 1112ターン目であることが分かる。

励磁タイミングは1112ターン目であることが分かる。 図4(b)はBPM4電極からの信号の合計であり、ビー ム電流に相当している。ビームロスはPQMの励磁後 20ターンの内に殆ど終わっており、最初の数ター ンが特に大きい事が分かる。さらに、PQMの励磁後 1万ターンまで調べたが、双極振動(別の測定で四 極振動も確認した)が成長していく様子は観測され なかった。

2.3 どこでビームを落とすのか

上述した測定から、ビームロスはPQMの励磁とほ ぼ同時に起きており、また双極・四極振動が成長し ていくのではないことが判明した。そこで我々は、 蓄積ビームはビーム不安定性等何らかの理由でPQM を励磁する前にすでにビームが広がっていて、その 広がりをPQMがさらに増大させているのが原因で ビームロスが生じているのではないかと推測した。 そして、そのビーム不安定性等が高周波加速空洞の 総加速電圧に強く依存しいて、横方向のビームの広 がりに影響を及ぼしているのではないかと推測した。 これらの推測を立証するために、高周波加速空洞 の総加速電圧を変えてPQMを励磁しながら水平方向 のビームの広がりを測定した。測定にはビームスク レーパーを使用し、最初に20mAのビームを蓄積し、 PQMは1Hzの繰返し率で励磁した。ビームスクレー パーのビーム中心からの距離を変えてビーム損失率 を測定し、その立ち上がりの部分をビームの広がり とした(図5及び図6参照)。図1に示されるよう に飽和蓄積ビーム電流値に明らかな違いが見られた 2MVと4MVを総加速電圧として選んだ。図5から 2MVの時のビームの広がりはそれぞれ水平方向に

図5: ビームスクレーパーを用いて測定した総加速 電圧が2MVの時のビーム損失率。INとOUTはそれぞ れリングの水平方向での測定であり、TOPとBOTTOM は上下方向での測定である。赤い実線は、損失率 の立ち上がりを示しており、 青い実線はビーム損 失率のベースラインを示している。

図6: 図5と同じであるが、総加速電圧が4MVの時 のビーム損失率。

30mm (ベースラインとIN及びOUTの交点がそれぞれ14mmと16mm)、垂直方向に7mm (ベースラインとTOP及びBOTTOMの交点がそれぞれ3mmと4mm)であった。一方、総加速電圧が4MVの場合は、水平に43mmと垂直に15mmで、飽和蓄積ビーム電流値の低い4MVの方が水平方向の幅がおよそ1.5倍広いという結果になった。また、ベースラインが高くなっているのは、ビームスクレーパーで削る前に既に別の場所でビームをロスしている事を示している。

ビームの損失場所を特定するため、ローカルバン プを使って探したが、残念ながら現時点までその場 所を特定するには至っていない。

2.3 高速ゲートカメラを用いてのビームプロファイ ル測定

総加速電圧の違いによって横方向ビームの広がり が変化することが、スクレーパーを使った実験より 解ったが、高速ゲートカメラ[2]でビームプロファ イルを観測することでクロスチェックを行った。 ビームスクレーパーを使った実験と同じ条件で測定 を行った。図8(a)はPQMで蓄積ビームを蹴る前の横 方向のビームプロファイルである。図8(b)(c)の2 枚はそれぞれ高周波加速空洞の総加速電圧が2VMと 4MVの時のビームプロファイルである。ビームプロ ファイルがGaussianであると仮定してビームサイズ

図7: 高速ゲートカメラで観測した横方向のビーム プロファイル。(a)は PQMの励磁の前、(b)は総加 速電圧が2MVでキックして 8 ターン後、(c)総加速 電圧が4MVでキックして 8 ターン後。ビーム・プロ フィールの枠の大きさは水平方向に17.0mm、垂直方 向に8.5mmで、この点でのベータトロン関数と分散 関数はそれぞれ4.11mと0.79mである。

を計算すると、中心部は殆ど違いがない事が解る。 しかしながら、2MVと4MVのビームテールの部分は明 らかな違いが観測されていて、4MVのビームは2MVの それより明らかに長いテールを引いている事が解っ た。これはビームスクレーパーを使った実験と定性 的に一致している。

3. まとめ

2004年9月以来、我々はPQM入射システムを用いて 60mAの蓄積ビーム電流を達成する為にPF-ARでビー ム入射試験を行って来た。PQM入射において飽和蓄 積ビーム電流値は高周波加速空洞の総加速電圧に強 く依存することが解り、その原因を解明するために、 様々な実験を行った。結果、蓄積ビームのテールの 広がりがその総加速電圧に依存し、これが原因で蓄 積ビームの損失がおこることが解って来た。しかし ながら、テールの広がりと総和加速電圧がどのよう に関係しているのか、またビームがリングのどの場 所でロスしているのか、現時点では判明していない。 したがって、これらの解明には、さらに詳細な実験 が必要であると考えている。

参考文献

- K. Harada, Y. Kobayashi, T. Miyajima and S. Nagahashi, Phys. Rev. ST Accel. Beams 10 123501 (2007).
- [2] T. Mitsuhashi and M. Tadano, Proc. of the PAC 2003, p2506.