ACCELERATION TESTS OF URANIUM BEAM IN RI BEAM FACTORY

Nobuhisa Fukunishi^{1,A)}, Masaki Fujimaki^{A)}, Akira Goto^{A)}, Hiroo Hasebe^{A)}, Yoshihide Higurashi^{A)},

Eiji Ikezwa ^{A)}, Tadashi Kageyama ^{A)}, Masayuki Kase ^{A)}, Masanori Kidera ^{A)}, Misaki Komiyama ^{A)},

Hironori Kuboki ^{A)}, Makoto Nagase ^{A)}, Keiko Kumagai ^{A)}, Ryo Koyama ^{A,B)}, Takeshi Maie ^{A)},

Takahide Nakagawa^{A)}, Jun-ichi Ohnishi^{A)}, Hiroki Okuno^{A)}, Hiromichi Ryuto^{A,C)}, Naruhiko Sakamoto^{A)},

Kenji Suda^{A)}, Masanori Wakasugi^{A)}, Tamaki Watanabe^{A)}, Kazunari Yamada^{A)}, Shigeru Yokouchi^{A)},

Osamu Kamigaito^{A)} and Yasushige Yano^{A)}

A) RIKEN Nishina Center for Accelerator-Based Science
 2-1 Hirosawa, Wako, Saitama, 351-0198
 B) SHI Accelerator Service Ltd.
 1-17-6 Osaki, Shinagawa, Tokyo, 141-0032
 C) Photonics and Electronics Science and Engineering Center, Kyoto University

Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510

Abstract

A 114-MeV/nucleon uranium beam with the intensity of 0.35 pnA was successfully extracted from RIKEN Intermediate-stage Ring Cyclotron. Transverse and longitudinal emittances of the uranium beam were estimated based on detailed analysis of observed data.

RIピームファクトリーにおけるウランピーム加速試験

1. はじめに

理研仁科センターのRIビームファクトリー¹⁾は 2006年12月に主加速器であるSuperconducting Ring Cyclotoron (SRC)²⁾からのファーストビーム取り出し に成功³⁾、2007年5月には核子当たり345 MeVに加速 したウランビームをRIビーム生成分離装置BigRIPS⁴⁾ に打ち込み、新放射性同位体¹²⁵Pd³⁾の生成に成功し た。しかしながら、最大で5段階加速を行うRIビー ムファクトリーにおいて、各段階のビーム通過効率 は極めて低く、多くの解決すべき問題があることが 認識されていた⁶⁾。これらを解決すべく2007年9月以 降、計5回のサイクロトロンを使った試験運転が行 われた。本報告では一連の試験運転の到達点を示す ものとして、2008年7月初旬に行われたウランビー ム加速試験の結果を報告する。

2. 試験運転時の通過効率

この一年間に実施した主な加速試験を表1にまと める。10日から2週間程度の試験運転を計5回行い、 そのうち3回はウランビームを加速した。なお、本 年度SRCを使った加速試験が行われていない理由は 参考文献(7)を参照されたい。表2にはRIBFの各段階 におけるビーム通過効率がまとめられている。表に 示された通過効率は加速試験期間中ベストの値であ り、荷電変換効率を除外した値である。荷電変換効 率は実測の荷電分布から決定した値を用いた⁸⁹。な お、比較のため示した2007年7月3日のデータでは、 ビーム量の較正が未だ成されておらず、測定に用い たRRC以降のファラディーカップが全て2倍多く読 んでいると仮定して評価した。RIBFにおいてはKrや Caなどの比較的軽いイオンはfixed-frequency Ring Cyclotoron (fRC)¹⁰⁾を使わずに核子当たり345 MeVま で加速することが出来るが、ウラン加速にはfRCが 必須で、かつfRC前後に各々エネルギー損失1.5%と 10%という厚いストリッパーを用いる必要がある。 KrやCaでは少なくとも最終段のSRC以外に関しては RIBFの第一段階の目標たる通過効率90%をほぼ実現 することが出来たが、ウランの場合は一年前に比べ て大きく改善したとは言え、未だかなり低い値に留 まっている。

表1 この一年間に実施されたRIBF加速試験 表中イオン価数は最終段加速器における価数である。

試験運転期間	加速イオン	試験時最終段加速器
07/09/21 - 10/04	²³⁸ U ⁸⁶⁺	RRC
07/11/02 - 11/10	${}^{86}{ m Kr}^{34+}$	SRC
08/04/18 - 05/02	²³⁸ U ⁸⁶⁺	IRC
08/06/01 - 06/09	$^{48}Ca^{20+}$	IRC
08/07/01 - 07/10	²³⁸ U ⁸⁶⁺	IRC

ウランビームの通過効率が上がらない理由はビー ムの質が設計値より悪いためであると推察される。 よってウランビームの質を推定することを目的とし

¹ E-mail: <u>fukunisi@ribf.riken.jp</u>

て2008年7月に行われた加速試験のデータを解析した。

表2 RIBF各段階における通過効率

RILACは理研重イオンリニアック、RRCは理研リン グサイクロトロン、IRCは中間段サイクロトロン^{III} を意味する。RILACの通過効率はイオン源から RILACの出口まで、RRC以降は前段加速器出口から 当該加速器出口までの通過効率を示す。

日時	ion	RILAC	RRC	fRC	IRC	SRC
07/07/03	238U86+	29	86	36	50	44
07/11/04	${}^{86}\text{Kr}^{34+}$	28	89		82	45
08/06/05	${}^{48}\text{Ca}^{20+}$	62	95		88	
08/07/10	²³⁸ U ⁸⁶⁺	31	73	85	83	

3. ウランビームのエミッタンスの推定

3.1 測定に用いたビーム診断装置

RIBFのレイアウトを図1に示す。RILACで加速さ れたウランビームは2台のリバンチャーを通して RRCに入射される。RRCで加速されたビームは図中 ストリッパー1で71+に荷電変換され、その後リバン チャーで位相圧縮された後fRCに入射される。fRCか らIRCまでは全長120mのビームライン(BL)を通して 輸送されるが、ほぼその中間点で第2回の荷電変換 を実施し、IRCに入射される。fRCからIRCに至る ビームラインを便宜上分割し、第2ストリッパーよ り上流をfRC出射ビームライン、第2ストリッパー以 降をIRC入射ビームラインと呼ぶこととする。

図1 RIBFのレイアウト

各加速器を繋ぐビームラインにはビームの horizontal、vertical方向の分布を測定するビームプロ ファイルモニター(PF)、ビーム量を測定するファラ ディーカップ(FC)、ビームエネルギーをTOF法で測 定するためのプラスティックシンチレータが常設さ れている。今回の加速試験に関連する範囲のモニ ター系を表3にまとめる。各PFで測定されるビーム の空間的な広がりの情報は、transverse方向における ビームエミッタンスを反映する量である。分散の大 きな場所にPFがあれば、エネルギー広がりに関する 情報を引き出すことが可能である。Longitudinal方向 の分布、例えばエネルギー広がりなどはTOF測定用 のプラスティックシンチレータで測定されるビーム の時間方向分布から推定することができる。更に、 各サイクロトロンに備え付けられたMain Differential Probe (MDP)により、加速されるビームのターンパ ターンが測定されるが、ターンパターンはサイクロ トロンに入射されるビームの位相幅やエネルギー幅 の情報を有している。これらを総合的に解析するこ とによりビームの質を推定した。

表3 ビームラインに設置されたモニターの個数

	長さ(m)	PF	FC	TOF
fRC入射	78	12	9	2
fRC出射	60	9	6	0
IRC入射	59	15	5	2

3.2 解析結果

PFデータ解析の一例として、fRC入射BLの解析 結果を図2に示す。fRC入射BLにおいてはRRC取り 出し領域におけるhorizontal、vertical方向のエミッタ ンスの形状を楕円形状の外縁を持つガウス分布と仮 定し、楕円を特徴付けるパラメータを変数として フィッティングを行う。Longitudinal方向に関しては 位相幅、エネルギー広がり(ガウス分布)をパラメー タとするが、RRCはフラットトップ共振器を持たな いため、正弦波加速に特徴的な位相とエネルギーの 相関を考慮して解析した。本質的にはビームライン の輸送行列を電磁石電流値から再構成してフィッ ティングしただけの解析であるが、リバンチャーに 関してのみ静電近似で求めた電場分布から微分法的 式を数値的に解く事とした。

図2 fRC入射ビームラインPFデータ解析結果。図は 上流から見たビームプロファイルで薄い線が実測、 青と赤の濃い線が計算結果。

fRC出射BL、IRC入射BLに関する解析結果もほぼ 同様のフィッティングを与える。PFの設置されてい る場所は無視出来ない分散があるため、horizontal方 向のフィッティングにおいては分散によるエネル ギー広がりとの分離が一般的に悪く、horizontalエ ミッタンスはvertical方向ほど正確には決められない。 この意味で多少不正確ではあるが、得られた結果を 表4にまとめる。図中のRMS-deviationはフィッティ ング対象となったビームの空間分布の幅σに対して 評価したものである。

表4 PFデータ解析で得られたウランビームエミッタ

ンスの推走値(unnormalized, 単位π mm · mmrad)				
	horizontal	RMS (H,	Vertical	RMS (V,
	emittance	mm)	emittance	mm)
fRC入射	2~5	1.4	2.2	0.8
fRC出射	7.2	1.3	1.4	0.5
IRC入射	13	1.4	2.8	0.7

次にMDPパターン解析例として、PFデータ解析で 得られたビームをfRCまで輸送し、加速シミュレー ションを行った結果と実測との比較を図3に示す。 実測データは加速領域の中盤から後半にかけて、二 次電子の影響が顕著でベースラインが下がってしま う。この点を無視して比較すれば本解析でfRCの周 回ビームパターンが良く再現されていることが分か る。

図3 fRCターンパターン解析結果。fRCの加速電圧は 測定結果を再現する様にフィットした。

このターンパターン解析結果とTOF測定用プラス ティックシンチレータで得られたビームの時間構造 に関する情報を総合的に判断し、各サイクロトロン に入射されるビームの位相幅を推定した結果をまと めると表5の通りとなる。

表5 サイクロトロンに入射されたビーム位相幅の 推定値(4σ領域、単位は度)

RRC	fRC	IRC
20	25	50

3.3 エミッタンス推定値が意味するもの

これまでに得られた推定値はIRCに入射された ビームに関して、horizontal方向のエミッタンス及 び位相広がりが設計値のほぼ2倍になっているこ とを示している。RIBFにおいては2008年10月以降、 本格的な実験が開始される予定であるが、このま まではSRCにおいて高い通過効率(90%)を期待す ることは出来ないため、改善が必要と判断される。

4. 今後

現段階ではビームの質を推定したのみで、ビーム の質の悪化の原因追求には更なる解析が必要である。 IRCに入射するビームの位相幅が長過ぎるという問 題は、第一ストリッパーの膜厚不均一によるエネル ギー広がりの増大が本質的であることはほぼ間違い ない。fRC入射ラインに設置されたリバンチャーの 効果により質の悪くなったビームをfRCのアクセプ タンスに収めることが出来るが、代償としてfRCに 入射されるビームのエネルギー広がりが増大し、こ れが約120m下流にあるIRCにおける位相広がりの原 因となる。ストリッパー1に用いられる炭素薄膜の 高品質化が強く望まれる。一方、これまで行ったシ ミュレーションによればfRCの運転パラメータの微 妙な違いによって簡単にIRC入射ビーム位相幅が 20%以上増減することが示されており、我々がこれ まで行ってきた調整方法では不十分であることが分 かった。ビームの時間構造とビーム量を同時に読め るモニターをIRC入射領域に設置する必要があると 考えられる。

参考文献

- [1] Y. Yano, Nucl. Instr. and Meth B 261 (2007) 1007
- [2] H. Okuno et al., IEEE Trans. Appl. Supercond. 17 (2007) 1063.
- [3] A. Goto et al., 18th Int. Conf. on Cyclotrons and their Applications, Giardini Naxos, Italy, Sep30 Oct5, 2007.
- [4] T. Kubo et al., Nucl. Instr. and Meth. B 204 (2003) 97.
- [5] T. Ohnishi et al., J. Phys. Soc. Jpn. (2008) 083201.
- [6] N. Fukunishi et al., Proc. PASJ4-LAM32 (2007) p. 1.
- [7] O. Kamigaito et al., PASJ5-LAM33, Hiroshima, Japan, August 6-8, 2008, WO04.
- [8] H. Ryuto et al.: Proc. of 18th Int. Conf. on Cyclotrons and Their Applications, 314 (2007).
- [9] H. Hasebe et al., PASJ5-LAM33, Hiroshima, Japan, August 6-8, 2008, WP046.
- [10] T. Mitsumoto et al., Proc. 17th Int. Conf. on Cyclotrons and Their Applications (2004) p. 384.
 [11] J. Ohnishi et al., Proc. 17th Int. Conf. on Cyclotrons and
- [11] J. Ohnishi et al., Proc. 17th Int. Conf. on Cyclotrons and Their Applications (2004) p. 197.