EXPERIMENTAL DEMONSTRATION OF CLEARING ELECTRODE TO MITIGATE ELECTRON CLOUD EFFECT IN POSITRON RING

Yusuke Suetsugu^{1,A)}, Hitoshi Fukuma^{A)}, Mauro Pivi^{B)}, Wang Lanfa^{B)}, Masaaki Tsukamoto^{C)}, Yasuaki Suzuki^{C)}, Akira Morishige^{C)} and Masao Tsuchiya^{C)}

^{A)} High Energy Accelerator Research Organization (KEK)⁻¹⁻¹ Oho, Tsukuba, Ibaraki 305-0801, Japan

^{B)} Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road Menlo Park, CA 94025, USA

^{C)} Kinzokugiken Co, Ltd., 713 Shake Aza Narihira, Ebina, Kanagawa 243-0424, Japan

Abstract

A thin strip-line clearing electrode has been developed to mitigate the electron-cloud effect in high-intensity positron/proton storage rings. The electrode is composed of a thin tungsten layer with a thickness of 0.1 mm formed on a thin alumina ceramic layer with a thickness of 0.2 mm. A test model has been installed into the KEK B-factory (KEKB) positron ring, along with an electron monitor with a retarding grid. The electron density in a field free region decreased by one order of magnitude on the application of ± 500 V to the electrode at a beam current of 1.6 A with 1585 bunches. Furthermore, the electron density decreased by two orders by applying ± 500 V to the electrode at the same beam current in a bending magnetic field of 0.75 T.

陽電子リングでの電子除去電極実証実験

1. はじめに

近年・将来の陽電子/陽子蓄積リングでは、ビーム 軌道周辺の電子によって励起される不安定性、いわ ゆる電子雲不安定性の抑制が重要な課題となってい る^[1]。これまで、ソレノイド磁場の印加や、2次電 子放出率の小さいTiN等のビームパイプ内面への コーティングなど、様々な対策が提案・研究されて きた^[2]。ビームパイプ内に設置した電極に電圧を加 え、その静電場により電子雲を除去する、いわゆる 電子除去電極(Clearing Electrode)も、直接的で効果が 大きく、また電磁石内でも適用可能なことから、有 望な解決法の一つと言われてきた^[3]。シミュレー ションでは電子密度が一桁以上減少することが示さ れている。低ビーム電流で長いバンチの陽子加速器 では、従来型のストリップライン型電極を用いた試 験も行われている^[4]。しかし、ビーム電流も高くバ ンチ長も短い陽電子リングでは、ビームインピーダ ンスの低減、高周波による発熱の抑制といった課題 を解決する必要があったため、未だに実証されてい ない。

我々は、ビームパイプ内表面に非常に薄いスト リップライン型電極を直接形成する方法を開発した。 電極構造を薄くすることでビームインピーダンスを 低くすることができ、また、電極に入る熱量を容易 にビームパイプ側に逃がすことができる。試作した 電子除去電極をKEK Bファクトリー(KEKB)陽電子 リング(3.5 GeV、1585バンチにて最大1.7 A、バンチ 長約7 mm)に設置して電子雲形成に対する効果を実 験的に調べた。そして、500 VのDC電圧を印加する ことで、ビーム近傍の電子密度を一桁以上小さくで きることを実験的に確認した。ここでは、今回開発 した電極、ビーム試験の結果、問題点、および今後 の方針等について報告する。

2. 電子除去電極

図1に、テストチェンバー内に取り付けた試作電 極を示す。電極は幅 40 mm、長さ440 mmである。 絶縁体は厚さ0.2 mmのアルミナセラミックス、電極 は厚さ0.1 mmのタングステンである。アルミナおよ びタングステンはステンレス板上に溶射された。電 極の長さは、実験に使用する偏向電磁石の有効長 (346 mm)と同程度で、かつ通常バンチフィルパター ンのスペクトルのピーク周波数と電極のインピーダ ンスの共鳴周波数が一致しないように設定した。幅 はビーム近傍の十分な領域の電子雲を除去できるよ う選んだ。テストチェンバーは140 ℃までベーキン グされたが、溶射した電極のはがれなどの問題は確 認されなかった。

電極の縦方向インピーダンスにはストリップライ

図1:試作した電子除去電極。

ンの構造上いくつかの共鳴点があるが、約1GHzの 共鳴周波数でも1~2Ωと小さかった。共鳴周波数で のシャントインピーダンスとQ値との比、いわゆる *R*/Qも0.1程度と小さく、縦方向の結合バンチ不安定 性は問題ないと考えられた。一方、ロスファクター は7.5×10⁹ VC¹であった。これは、1585バンチ1600 mAで約120 Wのエネルギー損に相当する。熱解析 では、電極の裏側に冷却水を流した状態で電極に 100 Wが入熱した時、電極の温度上昇は6 ℃と見積 もられた。ちなみに、アルミナセラミックスおよび 電極の厚みを1 mmとした時の縦方向インピーダン スとロスファクターは約10 Ωと1.6×10¹⁰ VC¹であっ た。薄くすることでビームとの干渉が少なくなって いる。また、電極構造が薄いため、ビームパイプの 開口面積を損なうこともない。

電極はその一端で銅板を介してフィードスルーと 接続した。フィードスルーはN型コネクター付きの 同軸端子である。電源(1 kV、30 mA)はリングの外 に設置され、フィードスルーとは約100 mの同軸 ケーブル(MH-5D-2E)で接続されている。電源の出 力部には、高周波成分を減衰させるためにカットオ フ周波数300 MHzのLow Pass Filterが置かれた。

3. ビームテスト

3.1設置

2008年冬に試作した電極および電子モニターを取り付けたテストチェンバーをKEKB陽電子リングに 設置した。テストチェンバーの断面を図2に示す。 上面に電極を、それに対向して下面に電子モニター を配置した。

電子モニターは、銅をコーティングした多数の穴 (Ø2 mm)を持つステンレス板(パンチングメタル)、 高周波シールド用ステンレスメッシュ、電子のエネ ルギーを選別するためのRetardingグリッド(ステン レスメッシュ)、そして電子を集めるコレクターの4 層からなる。Retardingグリッドには最大-1 kVの電 圧が印加される。電子を集めるコレクターは、水平 方向の電子分布を測定するために7本のストリップ で構成された(#1-#7)。ビームは#4の真上付近を通

図2:電極と電子モニターを備えたテストチェ ンバーの断面。

図3:磁石外にて V_{elec} に-500 Vから+500Vまで加 えたときの各コレクターの電子電流($V_r = -1 kV$)。

る。1本のコレクターの幅、長さはそれぞれ5 mm、 140 mmである。コレクターには常時+100 Vの電圧 が印加された。電子電流はDCモードで測定された。 すなわち、時間的に平均された値である。

3.2 磁石外での実験

テストチェンバーは、まず磁石の外(磁場無し)に 設置され、電極の発熱具合確認、電子モニターの機 能確認とともに、電子雲除去電極の効果が試された。 図3は、電極の電圧(Velec)を-500 Vから+500 Vまで 変化させた時の各コレクターの電子電流の変化であ る(対数目盛)。Retardingグリッドの電圧(V,)は-1 kV である。この電圧では、ビーム軌道付近の電子のみ を測定していることに相当する。電子電流1×10⁻⁵ A はビーム近傍の電子密度およそ1×10¹³個m⁻³に相当す る。±500 Vで電子密度が一桁以上減少していること がわかる。電子雲除去電極が、磁場が無くても電子 密度低減に大きな効果をもつことが確認された。

電極の温度は、ビーム電流1600 mAにてチェン バー大気側で3 ℃程度の上昇で、問題はなかった。 電源への入力パワーも小さく問題はなかった。ただ し、フィードスルー部で予想以上の発熱が見つかっ たが、空冷と水冷で対処できた。原因はフィードス ルーとケーブルでのインピーダンス整合が取れてい ないためと考えられる。

図4:磁場(0.75 T)中でビームを蓄積して行った 時の電子電流の変化(1585バンチ、バンチ間隔約 6 ns)。V_r=0 V。

図5:磁場中(0.75 T)にてV_{elec}に-500 Vから+500 Vまで印加したときの電子電流(V_r = -1 kV)。

3.3 磁石内での実験

続いて、テストチェンバーを磁場強度0.75 Tの偏向電磁石内に移設した。図4は、1585バンチで電流を蓄積して行った時の水平方向電子分布である。 1500 mAまでは中心(コレクター#4)で最も高い値であるが、さらに電流が増えると二山になった。これは、ある一次電子エネルギーで二次電子放出率が最大値を持つことに起因するもので、シミュレーションでも予想されている。

図5は、ビーム電流約1600 mAにて V_{elec} を-500 V から+500 Vまで変えた時の電子分布を示している (対数目盛)。 V_r は-1 kVである。 $V_{elec} > 0$ Vの範囲で は、 V_{elec} の値が大きくなるにつれ電子数は単調に減 少する。この場合、 $V_{elec} = +100~200$ V、+300~400 V で中心付近の電子数(#3~#5)はそれぞれ1/10、1/100 と大きく減少しており電子雲除去電極の有効性が確 認された。おおよそであるが、電子電流1×10⁶ Aは、 ビーム近傍の電子密度1×10¹²個m⁻³程度に相当する。

一方 $V_{elec} < 0 V$ では、測定した電子電流は複雑な振る舞いをしている。このような振る舞いは磁石外では観測されなかった(図3)。磁場によって電子の運動方向が垂直方向に制限され、電子モニター自身

図6:バンチ間隔を16,8,6,4 nsにした時の電子 電流のV_{elec}依存性 (V_r=0V)。

(グリッドなど)の影響が反映された可能性がる。今後より詳細なシミュレーションが必要である。

次に、蓄積するビームのフィルパターンを変えて 電子除去電極の効果を調べた。バンチ間隔は、4、6、 8、16 nsである。図6に示すように、これらすべて のバンチフィルパターンで電子除去電極の効果が確 認された。興味深いのは、フィルパターンによって Velecの効き具合が変わることである。すなわち、バ ンチ間隔が狭いとより大きな電圧が必要となる傾向 があった(Velecに対する傾きに注目)。これは、バン チ間隔が狭いと次のバンチが到着する前に電子を掃 討するために大きな電圧(電界)が必要なため、と考 えると定性的に理解できる。

3.4 問題点

第一の問題は、絶縁抵抗の減少である。初期には 電極の絶縁抵抗は5 MΩ(500 V印加時)であったが、 リングに設置して実験を続けると徐々に下がり、約 100 kΩで落ち着いた。また時折放電が観測された。 内部を確認すると、電極とフィードスルーとの接続 部で放電していることが分かった。接続用の銅板が スパッタされ、アルミナ表面に導電性が生じたもの と考えられる。第二の問題は電極周囲のセラミック ス部の変色である。実験期間中に白から灰色に変色 した。この原因はなお調査中である。

4. まとめ

薄い構造を持つ電子雲除去電極を開発し、KEKB 陽電子リングで実証実験を行った。電極にDC +500 ∨ 程度の電圧を印加することにより、電子密度を 一桁以上低下させることができた。大電流短バンチ の陽電子リングでは初めて実験的に実証された。磁 場中での電子雲対策に有効な手段を提示することが できた。今後はシミュレーションによる現象の理解 と共に、フィードスルー部と電極との接続部を改良 し、実用化に向けて改良・研究を続ける予定である。

謝辞

本研究にあたり、KEKBの生出勝宣氏、金澤健一氏、 飛山真理氏には多くの助言を頂きました。ここに深 謝します。

参考文献

- [1] For example, K. Ohmi, Phys. Rev. Lett. 75 (1995) 1526.
- [2] Reports presented in the workshops of ECLOUD'02 (CERN, April 15–18, 2002), ECLOUD'04 (Napa, April 19–23, 2004), ECLOUD'07 (Daegu, April 9–12, 2007), and ECL2 Workshop (CERN, February 28–March 2, 2007).
- [3] L. Wang, H. Fukuma, S. Kurokawa, M. Pivi and G. Xia, Proceedings EPAC2006 (Edinburgh, June 26–30) 1489.
- [4] E. Mahner, T. Kroyer and F. Caspers, Presented in LHC Machine Advisory Committee Meeting No. 22, EM-APC-03-07-2007 (2007).