Timing and low level RF system toward XFEL

Takashi Ohshima^{1,A)}, HIrokazu Maesaka^{A)}, Naoyasu Hosoda^{A)}, Kenji Tamasaku^{A)},

Mitsuru Musha^{B)} and Yuji Otake^{A)}

^{A)}RIKEN, 1-1-1 Kouto, Sayo, Hyogo, 679-5148

^{B)} Institute of Laser Science, Univ. of Electro-communications

1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585

Abstract

The construction of RIKEN XFEL is under progress. In this accelerator, it is needed to drive accelerator cavities by an RF signal with a time accuracy of 50fs and an amplitude stability of 1E-4. To satisfy these requirements, an optical system to deliver the reference RF signals is employed to the XFEL. The system has about 1 km long and nearly 80 destination points. The prototype modules of an optical transmitter and an optical receiver were fabricated and tested. The phase noise of these modules for 5712MHz signal corresponds to a time jitter of about 7 fs, which is estimated by integrating the SSB noise spectrum from 1 MHz to 10 MHz. This value is allowable level for our demand. The Low Level RF control (LLRF) configuration for the XFEL is almost the same as that used for the SCSS test accelerator, except special care will be taken to stabilize the temperature around RF modules and RF cables. The performance of the LLRF in the SCSS test accelerator was checked by measuring the jitter of beam arrival timing at an RF-BPM cavity. Its short term timing jitter was 50 fs in rms, which is within the requirement for the XFEL. The optical transmission system and the LLRF system have promising performance toward the XFEL

XFELに向けたタイミング・RF制御

1. はじめに

西播磨SPring-8キャンパスでは2010年秋からのコ ミッショニング開始に向けてX線自由電子レーザー (XFEL)の建設が進められている[1]。この加速器 においては、RF信号の位相および振幅の設定、検出 について厳しい個所では50fs以下、0.01%以下とい う高い精度が要求されている[2,3]。そのために、 XFELの原理検証器であるSCSS試験加速器の建設の段 階で、RF制御システムとして、低位相雑音の基準RF 信号発生器の製作、IQ法を用いたRF信号位相・振幅 の変調器、検出器の開発、それらの制御/出力監視 に用いられる高速・高精度DAC/ADCモジュールの製 作、基準RF信号に対するジッタを700fsに抑えた遅 延パルス信号発生器の開発が行われた[4]。しかし、 XFELにおいては、バンチ圧縮率が3000とSCSS試験加 速器に比べ1 桁高い。それに応じてRF信号に対する 許容値も、単純比例としても試験加速器に比べ10倍 厳しいものとなる。また、基準RF信号の伝送距離に ついても、試験加速器では最長約100mであったが、 XFELでは最長1km近い距離を伝送する必要がある。 基準RF信号を伝送するべきラックの数も約80台程度 と大きな数となっている。

上に述べたような、大規模なシステムで高度に安 定した加速RF位相・振幅を実現するためには各構成 要素の温度変化の影響を取り除くことが重要となる。 この目的のために、次の対策を講じる予定である。

a)水冷ラックの採用:RF制御に関連した機器は、 温調された冷却水を用いて温度安定化のなされた ラックに収めることとした。また、空洞ピックアッ プからIQ検出器までを結ぶケーブルに関しても断熱 保温を行い、そこに温調した冷却水を通水すること により温度の安定化を図ることにしている。

b) 温調された光ファイバーによる基準RF信号の伝送:基準RF信号伝送には、断熱保温、温調された冷却水の通水による温度安定化を図った光ファイバーを用いる。温度安定化によって抑えきれないドリフトのついては、光ファイバーの長さを一定に保つ制御回路を用いる。

今回の報告では、XFELでの基準RF信号伝送システムの構成、温度安定化への取り組み、RF制御の改良とビームを使って測定したその性能について述べる。

2. XFELの基準RF信号伝送と温度安定化

2.1基準RF信号の伝送

XFELは長さ約700mの施設である。熱陰極電子銃 からの電子ビームは、238MHz Sub-harmonic Buncher、 476MHz Booster、Lバンド(1428MHz)加速管、Sバ ンド(2856MHz)加速管、Cバンド(5712MHz)加 速管の順に通過し加速される。図1に加速器の概念 図を示す。基準となるRF信号を発生させるマス ターオシレータは、電子銃の近傍に設置される。基 準RF信号は、加速器に沿って分散されて設置され た制御用19"ラックに伝送される。その制御ラック の数はバンチングを行う部分で25台、クレスト加速

¹ E-mail: <u>ohshima@spring8.or.jp</u>

図2 波長多重を用いた基準RF信号の伝送。

部で46台である。挿入光源の設置される光源部にお いてもRF-BPMを用いたビーム位置測定やCTを用い たバンチ電流測定がおこなわれるため、さらに数台 の基準RFを受信するラックが設置される。また、 ポンプ・プローブ実験などのために、正確なタイミ ングをもった信号を実験棟まで伝送する必要があり、 合計80台近いラックに基準RF信号を伝送すること となる。

基準RF信号の伝送に関しては、光ファイバーを用 いたシステムを構築する[3]。試験加速器で用いて いた電気的な同軸ケーブルを用いた伝送では、高周 波信号の大きな伝送損失、伝送経路での温度変化に よる電気長の変化、接地電位差に関連したトラブル などが考えられたためである。基準RF信号の伝送 には図2に示すような波長多重の手法を用いる。各 ラックには加速管に供給するRF信号、タイミング 制御のために必要な5712MHz、238MHz、マスター トリガ信号の複数の信号を送る必要がある。これを 1本のファイバーで伝送することができればコスト 削減につながるためである。実機での使用を視野に 入れた波長多重用光信号送受信機の試作が行われ、 昨年度末に納品された。試作機の試験を行った結果、 EDFA光増幅器においてDC電源のノイズにより雑音 の増加があること、中に使用されている光学部品の 通常のファイバーが大きな伝達時間温度変化を与え ることなどがわかった。そこで、DC電源の低ノイ ズ化、不要ファイバーの長さの削減の対策がとられ た。対策後の試作機について、5712MHz、238MHz 信号出力の位相ノイズを測定した。その結果を図3 に示す。光送受信器を経由した信号は、マスターオ シレータの信号に比べて、100kHz以下のオフセット 周波数において位相ノイズは増加していない。 EDFAに起因すると思われる1MHz以上の位相ノイズ のレベルは5712MHzに対しては-145dBc/Hz以下と小 さく、これは1MHzから10MHzまで積分では7fsの時 間変動に対応するが、これは許容範囲内である。

2.2温度安定化への取り組み

光伝送には、位相安定化光ファイバーを採用する 予定である。このファイバーは、5ps/km/K以下とい う伝達時間温度係数を持つ。さまざまな制約から、 基準RF信号の伝送に用いられる光ファイバーは、ク ライストロンギャラリーの加速器トンネル壁沿い高 さ約3mの位置を通線する予定となっている。この位

図3 光送受信器を通過した後のRF信号の位相ノイズ。

置での気温変動は空調機の精度から±2度が見込ま れる。この温度変動により、位相安定ファイバーを 採用しても1kmの伝送時には±10psの遅延時間の変 動が予想される。そこで、光ファイバーは断熱保温 したケースに収め、26度±0.2度に温度調整された 冷却水を通水して温度安定化を図る予定である。

基準RF信号の精度を維持するためには、さらに、 各空洞に励起されるRFの位相、振幅を高い精度で検 出し、その値を一定に保つように高い精度で制御す ことが重要である。そのため、RFの位相、振幅を るこ 制御、検出する機器が納められる制御ラックに対し、 温調した水を使って温度安定化を図る。このラック 内の空気は、温度を26度±0.2度に安定化した冷却 水が通るラジエター通し5台のファンを使って循環 させる。これにより、ラック内の温度安定化を図る。 空洞のピックアップ信号を伝送する同軸ケーブル の温度変動は、RF位相、振幅検出器大きな影響を与 える。ここで用いる同軸ケーブルには電気長の温度 係数の小さなものを使用する。XFELではさらに、同 軸ケーブルを断熱材で覆い、温度調整された冷却水 を通水して温度の安定化を図る予定である。

2.3光ファイバー長安定化

基準RF信号伝送において受動的対策では抑えき れない温度による伝送時間の変化を更に抑制するた めに、生じたファイバーの光路長変化を測定して補 正する能動的対策を取ることも検討している[2]。 ファイバー長測定には光へテロダインの方式を用い る。SPring-8蓄積リングに張られた2kmの光ファイ バーを用いた実験では、100Hz以下の周波数領域で ファイバー長の変動は0.2um/√Hzという値を得た。 これは1Hzから100Hzまでの積分値として2umとなり、 10fsの時間変動内に抑えることに対応する。この実 験で使用されたファイバーストレッチャでは80Hz程 度で位相遅れが発生していた。現在は5kHzまで帯域 が伸びている改良型のストレッチャが入手できてお り、さらに広い帯域で安定化を図る予定である。

3. RF制御系の改善

SCSS試験加速器では、安定したSASE光の飽和を得

るために、また、XFELでの使用を目指した性能達成 のために、各構成要素の改善が進められている。

その一つにRF変調信号の高精度化があげられる。 初期段階でのSCSS試験加速器の運転経験から、安定 したSASE光の飽和のためには、238MHz、476MHzの加 速電圧・位相制御における設定精度が足りないこと が運転グループから指摘されていた。そこで、IQ変 調器に対して振幅・位相を設定するために用いられ ていたDACボードの分解能を12bitから14bitに向上 させる対策を採った。また、RF増幅器の温度ドリフ ト、クライストロンの温度変化による変動などの影 響を取り除くため、空洞ピックアップからの信号の 位相、振幅が一定となるようにソフトウエアによる フィードバック制御を実装する対策を採った[5]。 その結果、238MHzにおいてピックアップ信号の安定 度についてrmsで位相0.02度、振幅0.03%以下の値 が実現されている。

また、電子銃から得られるビームのうち、1nsを 切り出すために用いられているディフレクタのタイ ミングが、タイミング回路の収められているラック の温度変化の影響を大きく受けることがわかった。 これに対しては、ディフレクタを駆動した信号をタ イミング系のラックまで送り戻し、計測したタイミ ングのずれを元にフィードバック制御を行うことで、 温度変動の影響を低減することに成功した[6]。

これらの改善後のLLRFシステムの総合性能を確認 するために、試験加速器において、基準RF信号と ビームの到達時間との間のジッタが測定された。試 験加速器の挿入光源手前に設置されたRF-BPMの基 準空洞にビームが誘起する信号と、基準RF信号との 間の位相差を測定した[3]。図4に2008年6月30日か ら7月4日までの期間にわたって測定した到達時間の 結果を示す。一日の中での到達時間の変動は大きい 時で500fs程度見られている。図4には試験加速器S バンド下流にあるバンチョンプレッサにおけるエネ ルギー分散部の水平位置も合わせて示した。到達時 間と電子ビームのエネルギーには強い相関が見られ ることから、10時間程度の長期変動の要因は加速器 上流部でのエネルギー変動の可能性がある。長期の

図4 電子ビーム到達時間測定システムの測定結果。 結果にはBCエネルギー分散部での水平位置も合わせ て示している。

変動を除いた短期ジッタについては、rmsで50fs以下に抑えられていた。

4. まとめと今後

RF制御に関しては試験加速器での運転の経験を生 かし、高精度高安定なシステムの実現に向けて検討 を進めている。検討されている機器の一部は現在運 転中のSCSS試験加速器で使用されており、試験加速 器の調整やEUV光の利用実験を通して長期の運転が 行われている。RF信号の位相、振幅のゆっくりとし たドリフトの影響は、ソフトウエアで組んだ信号安 定化プログラムを用いることにより低減を図ってい る。LLRFシステムを含めた加速器高周波源の総合的 な性能については、基準RF信号に対するビームの到 達時間のジッタを測定することによりなされ、短期 ジッタはrmsで50fs以下であることが確認された。 この値は要求値に近い値であるが、安定な動作のた めにはさらに改善が必要であり、今後の課題である。

基準RF信号伝送に関しては、波長多重を用いた 信号伝送において位相ノイズの増加が影響のない範 囲であることが確認できた。光伝送路は断熱保温を 行い、さらに残った変動はファイバー長安定化回路 を用いて補正を行う。安定化回路により2kmのファ イバーに対して2umの長さで安定化を行うことがで きることが確認された。

XFELに用いられるLLRF関連の制御ラックの初号機 は、平成20年12月に納品予定である。初号機の動作 確認が行われたのち、月産約6台のペースで量産機 の生産が開始され、平成22年3月末までに全数が納 品される予定となっている。納品されたLLRF制御装 置を使用して平成22年10月からは加速管のコンディ ショニングが開始され、平成22年度末から加速器の ビーム運転が開始される予定である。

参考文献

- [1] T. Shintake, et al., "X線自由電子レーザー計画の現状", in these proceedings.
- [2] Y. Otake, et al., "XFEL/SPring8用光タイミング・低電力 高周波分配システムの開発", Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan, Wako, Aug. 1-3, 2007, (2007), pp.106-108
- [3] Y. Otake, et al., "Timing and LLRF System of Japan XFEL to realize femto-second stability", Proceedings of the ICALEPCS07, Knoxville, Tennessee, USA, (2007), pp.706-710
- [4] T. Ohshima, et al., "XFELに向けた低電力高周波システムの改良", Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan, Wako, Aug. 1-3, 2007, (2007), pp.559-561
- [5] H. Maesaka, et al., "SCSS試験加速器のRFシステムの高 精度化", in these proceedings.
- [6] N. Hosoda, et al., "SCSS試験加速器におけるEUVレー ザー安定化のための高電圧パルスディフレクタのタイ ミング制御", in these proceedings.