光電子分光法を用いた CsK₂Sb マルチアルカリフォトカソードの表面分析 AN ANALYSIS OF SURFACES OF CSK₂SB MULTI-ALKALI PHOTOCATHODE BY PHOTOEMISSION ELECTRON SPECTROSCOPY

浦野正洋^{#, A)}, 栗木雅夫 ^{A)}, 根岸健太郎 ^{A)}, 許斐太郎 ^{B)}, 山本尚人 ^{B)}, 清宮裕史 ^{B)}

Masahiro Urano^{#, A)}, Masao Kuriki^{A)}, Kentaro Negishi^{A)}, Taro Konomi^{B)}, Naoto Yamamoto^{B)}, Yuji Seimiya^{B)}

^{A)} Hiroshima University / Advanced Science of Matter

^{B)} KEK / High Energy Accelerator Research Organization

Abstract

Photocathode is one of the most important components in the next-generation accelerator. Photocathode performance depends not only on electronic state of the bulk material, but also on the surface condition. We studied CsK_2Sb photocathode which is one of the high performance photocathode driven by green laser, by UPS (UV Photo-electron Spectroscopy) to understand the cathode performance from a view point of the surface state. We observed significant changes on the spectrum by the cathode evaporation and degradation which could be correlated to the cathode performance.

1. はじめに

ERL(Energy Recovery Linac), X-FEL(Free Electron Laser)[1],などの線形加速器ベースの新たなプロジェ クトが世界中で提案され,一部は実現されている。 蓄積リング型電子加速器では、平衡状態として電子 ビームの品質は決まり、電子源に質の高いビームを 生成することは要求されてこなかった。しかし線形 加速器ではビームの品質や電流量は電子源からの入 射ビームの品質に大きく影響されてしまうため、電 子源の役割は飛躍的に大きくなる。そのため低エ ミッタンスで大電流のビームを生成できる電子源が 必要となり、従来の熱電子銃に変わりフォトカソー ド電子銃が注目されている。

フォトカソード電子銃は光電効果によって電子を 発生させるため、熱電子銃のように熱エネルギーに よるエミッタンスの増大が小さい。またレーザー照 射のタイミングで電子の発生をコントロールできる ため短パルスビームの生成が可能である。中でも2 種類以上のアルカリ金属を用いた CsK2Sb などのマ ルチアルカリフォトカソードは、500 nm 帯の可視光 での励起が可能で、10%程度の高い量子効率を持 ち、耐久性も高いという特徴があるため、次世代放 射光源の電子源として大きく期待されている[2]。し かしフォトカソードは従来光電子増倍管に用いられ てきた技術であり、加速器の電子源としての使用の 実績はあまり多くはない。そのため、加速器の電子 源としての最適な成膜条件は未だ確立されていな い。一般的に、カソード性能はバルク材の電子構造 とともに、物質の真空との界面である表面状態に大 きく左右され、それを物理的に理解するのは簡単で はない。本研究では、カソード性能の基礎的理解を 目的とし、CsK₂Sb カソードの紫外線を用いた光電

光電子分光法(Photoemission Electron Spectroscopy (PES))とは物質の表面分析方法のひとつである。励 起源である単色光を試料に入射し、光電効果によっ て真空に放出される光電子の運動エネルギーを測定 することで、試料表面の電子の状態を調べる。光電 子の励起源に X線を用いた XPS と紫外線を用いた UPS がある。XPS は内殻の電子まで励起することが できるため電子の結合状態や、電子分布状態を明ら かにすることに適している。一方 UPS は励起源のエ ネルギーが低く内殻電子を励起することは出来ない が、価電子帯付近の分解能が XPS と比べて良く、こ の付近の電子状態を調べるのに適している。本研究 ではカソードの量子効率の違いや、劣化などによる 表面状態の変化は価電子帯や比較的外側の軌道を回 る電子のスペクトラムに現れると考え、UPS を行っ た。電子の束縛エネルギーE_bは、励起光のエネル ギーhv、光電子分光実験で測定される運動エネル ギー E_k 、試料の仕事関数 ϕ により

$$E_b = h\nu - E_k - \phi \tag{1}$$

と表される。この式を図で表したものが Figure 1 で ある。Figure 1 の横軸はアナライザーにおいて測定 された電子のカウント数、縦軸は測定された電子の 運動エネルギーと物質中の電子の束縛エネルギーで ある。Figure 1 の左半分は物質中の電子の電子構造 を示していて、右半分は光電子分実験によって得ら れるスペクトラムを模式的に表している。*E*_bは電子 のエネルギー準位をフェルミ準位 E_fを基準として表 したもので、占有状態は負の値を持つが、慣習的に 絶対値で表す。励起光のエネルギーは分かっている ので、仕事関数(すなわち真空準位とフェルミ準位

子分光実験(UV Photo-electron Spectroscopy)を行った。

[#] m156664@hiroshima-u.ac.jp

PASJ2015 WEP040

との差)が分かれば上式より束縛エネルギーを決定 することができる。金属においては、E_fはスペクト ラムのエンドポイントとして観測可能であり、その 場合の仕事関数¢は物質内の電子を励起させる光子 のエネルギーhvとスペクトラム上のフェルミ準位の 位置 E_fから次式のようにして求められる。

$$\phi = h\nu - E_f \tag{2}$$

束縛エネルギーは、化学結合や電子のスピンなど 様々な理由によってシフトしたり、スプリットした りする。その変化を解析することで、化合物の生成 など、試料の表面状態を知ることが可能である。

本研究では CsK₂Sb マルチアルカリフォトカソー ドを蒸着作成し、その量子効率及び UPS 測定を行う ことで、カソード内の物理的現象の理解を目指す。

2. 実験装置と実験方法

本実験は、分子研 UVSOR のビームライン BL2B[3]を用いて行った。システムは UPS 測定のた めの主測定室に加え、サンプル導入のためのロー ディングチャンバー、サンプルの加熱洗浄チャン バーを含み、また、本実験のため、専用のカソード 蒸着チャンバーを新たに加えた。以下、実験につい ての概要を説明する。 2.1 実験装置

1. 蒸着チャンバー

蒸着チャンバー内の構造を Figure 2 に示す。 CsK₂Sb カソードは大気中ではその活性が失われ るため、高真空中で基板上に蒸着薄膜として生 成する。そのための専用のチャンバーを、ゲー トバルブを介して主測定室に接続する形で設置 した。チャンバーはイオンポンプと NEG ポンプ で排気され、典型的な圧力は 10-7Pa 程度である。 内部には蒸着源とサンプルホルダー、膜厚計が Figure 2 に示されているように設置されている。 蒸着源からは二つの方向に金属蒸気が発生する。 ホルダーに固定されたサンプルから蒸着源まで の距離と、膜厚計から蒸着源までの距離は等し く、蒸着と同時に膜厚計でサンプル上の物質量 を測定できるようになっている。蒸着チャン バーにはレーザー導入のためのビューポートが 設置されており、サンプルにバイアス電圧をか け光電流を測定することで、蒸着中の量子効率 測定が可能である。量子効率の測定に用いた レーザーの波長は 405 nm の青色レーザーで、 レーザーパワーはビューポート直前で測定した ものを使用している。

Figure 2: Image of our deposition chamber.

2. サンプル基板

本実験ではカソード生成を行う基板としてボロ ンをドープした p型 Si(100) (Figure 3)を用いた。 サンプルは 8mm 角に切り出した後、エタノール で超音波洗浄を行い、サンプルホルダーに実装 した後、ローディングチャンバーより測定室に 導入する。導入後、IR ヒーターにより一時間程 度加熱した後、蒸着試験を行った。また、蒸着 実験を行った後、同じサンプルを再び加熱洗浄

PASJ2015 WEP040

した後に、再び蒸着を行っている。

Figure 3: Photo of the Si wafer.

3. 蒸着源

本実験で使用した蒸着源を Figure 4 に示す。 蒸着源は直方体の柱の隣り合う二面にそれぞれ 設置され、サンプルと膜厚計に等しく蒸気が達 するようになっている。

Figure 4: Photo of our evaporate source.

2.2 実験方法

ここでは詳細な実験手順の説明を行う。

(1) 加熱洗浄

加熱洗浄用チャンバーにて Si サンプルの清 浄表面が得られるまで十分加熱洗浄を行う。

(2) 蒸着

加熱洗浄を終えたサンプルを蒸着チャン バーへ移動し蒸着を行う。Figure 5 に模擬的に 表しているように、Sb, K, Cs の順番で蒸着を おこなった。Sb は 100Åを目標として蒸着し た。K の蒸着を開始すると、量子効率が徐々 に上昇していく様子が観測される。一定の蒸 着レートで K の蒸着を続けると、ある時点で 量子効率の上昇率が低下し、飽和が観測され るので、その時点で K の蒸着を停止する。次 に Cs を K の時と同様に量子効率の上昇率が低 下し、量子効率が飽和したと判断できるまで 蒸着を行う。今回は、CsK₂Sb に加え、Sb 単体 も測定をおこなった。それらの条件を Table1 にまとめる。Table 中の Final QE とは Cs 蒸着 直後のカソードの量子効率を表している。

Figure 5: A schematic drawing of the evaporation process of CsK_2Sb cathode. Sb is evaporated up to defined thickness, but K and Cs evaporations are continued up to when QE is saturated.

Table 1: Summary of Cathode Evaporation

Cultation of	Thickness[Å]			Final
Substance	Sb	Κ	Cs	QE [%]
CsK₂Sb 1 st	110	373	700	2.3
CsK ₂ Sb 2 nd	94	397	443	8.5
Sb	102	0	0	None

(3) UPS 測定

本実験を行った分子科学研究所の UVSOR は蓄積電子のエネルギーが 750MeV のシンク ロトロン放射光源である。放射光はさまざま な波長の光を含んでいるため、回折格子に よって実験に必要な波長の光のみを取り出す。 本実験では BL2B を利用し、モノクロメー ターにより切り出した 59eV の紫外光を用いて UPS 測定を行った。

3. 実験結果

以下、実験結果について述べる。

3.1 Sb 5s 5p ピーク

基板上に CsK₂Sb が生成されているかを評価する ために、Sb の価電子のピークに着目して、Sb 単体 と、有限の量子効率が観測可能な CsK₂Sb の比較を

PASJ2015 WEP040

行った。Figure6 に Si 基板上に Sb のみを蒸着したサ ンプルによる価電子帯付近の UPS スペクトラムを示 す。横軸は物質中の電子の束縛エネルギー、縦軸は カウント数である。赤線が実際に取得されたデータ である。青線は解析の結果得られたカーブだが、こ れはスペクトラムには Sb 5s ピークと 5p ピークであ ると推定される[2]メインピークのほかに、メイン ピークより数 eV 高い位置に様々な理由から作られ たサテライトピークがあるという仮定から得られた ものである。

Figure 7 は Si 基板上に CsK₂Sb を蒸着したサンプル の価電子帯付近の UPS スペクトラムである。Figure 6 の場合と同様に横軸は物質中の電子の束縛エネル ギー、縦軸はカウント数である。実際に取得された スペクトラムは青線で示し、解析によって得られた 曲線を赤色、バックグラウンドは緑線で示している。 黄色、黒色、ピンク色はガウシアンを仮定したピー クである。CsK₂Sb は半導体であるので価電子帯の準 位構造は、金属の Sb と比べて大きく変化する。さら にケミカルシフトによりピークがシフトしている可 能性があり、単体の Sb 5s, 5p の文献値[2]と図中の束 縛エネルギーの値とは直接比較できない。しかし他 の物質に相当する準位が見当たらないことから、図 に示しているようにピンク色の Sb 5s ピークと黄色 の Sb 5p ピークを決定した。

Figure 6 と Figure 7 の実際に取得されたスペクトラムを比較する。まず Sb 単体のスペクトラムの形状に着目すると、束縛エネルギーの高い側に広がりを持っているのが分かる。このスペクトラムは、メインピークとそこから数 eV 高い側にずれたところにあるサテライトピークが重なり合うことでできている。一方 CsK₂Sb 中の Sb5s, 5p ピークだと推定される部分のスペクトラムの形状に注目すると、サテライトピークの影響によるブロードはほとんど見えなくなっている。

次に Sb 単体の 5s, 5p ピークと CsK₂Sb 中の Sb の 5s, 5p ピークのガウシアンの幅を比較した(Table 2)。 Sb の実測 5s, 5p ピークはメインピークとサテライト ピークから成ると仮定しているが、ここではメイン ピークの幅のみを比較している。5s, 5p ピークとも に CsK₂Sb のピークの幅の方が Sb のピークの幅と比 べて小さい。これより CsK₂Sb 中の Sb の 5s、5p ピー クは Sb が単体の時と比べて鋭く変化していることが 分かる。

X 線光電子分光実験で Sb が単体の場合、5s, 5p ピークは低く幅を持ったものになるが、Sb3+などの イオンとして存在する場合はシャープなものに変化 することが報告されている[3] が、同じことが紫外 光分光実験でも確認できたといえる。ここから CsK₂Sb の価電子帯(E_b<10eV)を調べることで Sb の結 合状態を観測することができると考えられる。

Figure 6: Sb valence spectrum.

Figure 7: CsK₂Sb valence spectrum.

Table 2: Sb 5s and 5p Peaks' Width in Sb and CsK₂Sb

	Sb	CsK₂Sb
5s Width[eV]	1.34 ± 0.09	0.38 ± 0.01
5p Width[eV]	0.73 ± 0.03	0.57 ± 0.02

3.2 カソードの劣化によるピークの変化

本研究では CsK2Sb カソードの劣化の様子が UPS スペクトラムにも表れると考え、同一試料のスペクトルを時間をおいて再取得し解析した。

Figure 8 は CsK₂Sb サンプルの価電子帯付近のスペ クトラムである。横軸に束縛エネルギー、縦軸に電 子のカウント数を取った。青線は蒸着直後のスペク トラム、赤線は蒸着 3 時間後のスペクトラムである。

以下では、蒸着直後に取得したスペクトラムにお いて束縛エネルギー~4eVの位置に出ていたピークを ピーク 1、束縛エネルギー~6eV の位置に出ていた ピークをピーク 2 と定義する。これらのピークもス ペクトラムと同様に、蒸着直後スペクトラムに含ま れているピークは青色、3 時間後に取得したスペク トラムに含まれているピークは赤色で示している。 蒸着 3 時間後に取得したスペクトラムは、測定時の セッティングの影響でカウント数が蒸着直後に取得 したものの10分の1程度になっていたため、カウン ト数を規格化したうえでスペクトラムを重ね合わせ ている。スペクトラム取得時の量子効率は、一回目 の取得時に 2.0%、二回目の取得時には 1.0%であっ た。

ピーク 1 はピーク幅に変化は無いが、ピークが束 縛エネルギーの大きい方向へ 0.4eV 程シフトしてい るのが分かる(Table 3)。一方ピーク 2 は、ピークの 位置の変化は 0.1eV 程で大きくはないが、ピークの 面積は約 10%増加している(Table 4)。

このカソードの量子効率の測定に用いた青色レー ザー(405nm)の光子のエネルギーは約3eVである。そ こで Figure 8 で束縛エネルギー3eV までのスペクト ラムに着目すると、ピーク 1 が、束縛エネルギーが 大きい方向へ大きくシフトしている、この間量子効 率はおよそ半減しており、このピークのシフトと量 子効率の減少は整合する。以上より量子効率の低下 は、CsK₂Sbの価電子帯のスペクトラムが束縛エネル ギーの大きい方向へシフトすることにより生じてい ると考えられる。また、他の価電子帯、内殻準位に も変化が見られて入り、量子効率の変化と CsK₂Sb の UPS のスペクトラムの変化を考察することにより、 カソード劣化のプロセスの理解が進むと期待される。 これらは今後の研究の課題である。

Figure 8: The time growth of valence spectrum.

Table 3: This Table Shows Peak1's Parameters Difference

	Peak1(0h)	Peak1(3h)
Center[eV]	3.68 ± 0.04	4.05±0.02
Width[eV]	0.57 ± 0.02	0.58 ± 0.01

Table 4: This Table Shows Peak2's Parameters Differen

	Peak2(0h)	Peak2(3h)
Center[eV]	6.16 ± 0.03	6.26 ± 0.01
Yield	2403 ± 90	2664 ± 30

4. まとめ

本研究は分子科学研究所 UVSOR の BL2B におい て、物質の最表面の情報を得られる紫外線光電子分 光実験を用いて CsK₂Sb マルチアルカリフォトカ ソードの性能とその表面状態との関係を調べた。今 回注目した価電子部分のスペクトラムでは

・Sb の 5s, 5p 価電子ピークは単体 Sb とマルチアル

カリ生成後では、その形状に変化が見られた。Sb 単体ではメインピークとサテライトピークが存在しているが、CsK₂Sb 中ではメインピークのみが存在し、その幅も鋭くなっており、Sb がイオン化していることが示唆される。

・カソードの劣化により CsK₂Sb の価電子部分の ピークが束縛エネルギーの大きい方向へシフトして いる。ピークがシフトした結果、青色レーザーで励 起可能な電子の数が減少したことが量子効率の低下 を引き起こしていると考えられる。

今後は内殻電子状態も含め、スペクトラム解析を すすめ、量子効率などのカソード性能との比較によ り、カソードの物理の理解をより一層深めていく。

参考文献

- [1] 羽島良一、中村典雄、坂中章悟、小林幸則編集 (2008) 『コンパクト ERL の設計研究』.
- [2] M.Kuriki "An Optimization study fot Multi-alkali photocathode as the ultimate electron source".
- [3] H. Yoshida and K. Mitsuke, J. Synchrotron Radiation 5 (1998) 774.
- [4] 染野檀、安藤岩雄編(1983)『表面分析: IMA, オージェ電子・光電子分光の応用』講談社.
- [5] Clayton W. Bates. "BASIC STUDIES OF HIGH PERFORMANCE MULTIALKALI PHOTO-CATHODES".