PASJ2015 WEP034

短パルスレーザー生成イオンの RF 同期加速によるイオン源

RF SYNCHRONIZED ACCELERATION OF IONS PRODUCED BY SHORT PULSE LASER

不破康裕^{#, A)}, 岩下芳久^{A)}, 頓宮拓^{A)}, 井上峻介^{A)}, 橋田昌樹^{A)}, 阪部周二^{A)},

岡村昌宏^{B)},山崎淳^{C)}

Yasuhiro Fuwa^{#, A)}, Yoshihisa Iwashita^{A)}, Hiromu Tongu^{A)}, Shunsuke Inoue^{A)}, Masaki Hashida^{A)}, Shuji Sakabe^{A)},

Masahiro Okamura^{B)}, Atsushi Yamazaki^{B)}

^{A)} Institute for Chemical Research, Kyoto University

^{B)} Brookhaven National Laboratory

^{B)} Nagoya University

Abstract

An laser ion source which produces bunched ion beam is proposed to enhance an acceleration efficiency of ion accelerator front end with RFQ linac. To demonstrate a production of an initially bunched ion beam. H_2 gas was ionized by shot pulse laser in an RF electric field. As a result, ions captured by the RF field were observed by an ion probe.

1. はじめに

イオン加速器は、素粒子・原子核研究の分野のみ ならず、粒子線がん治療や半導体製造等幅広い応用 分野で利用されている。このため、物理研究用の大 型かつ複雑な構成をもつ加速器からシンプルでより 扱いやすい汎用加速器への進展が期待されている。

現在イオン加速器の再前段加速部としては RFO (Radio Frequency Quadrupole)加速器[1,2]の使用が主 流となっている。通常イオン源からはバンチ化され ていない直流ビームが生成され、RFO 内部ではビー ムのバンチ化と加速が順次行われる。そのため、従 来の RFQ は次の3つあるいは4つの機能部分から 形成され、それぞれラジアルマッチングセクション、 バンチングセクション、(シェイパーセクション)、 加速セクションと呼ばれる[2]。バンチングセクショ ンにおいては、ビームは縦方向の高周波電場により 断熱的にバンチ化される。断熱条件を満たすために ヴェインモジュレーションと加速位相を徐々に変化 させて加速に適した値まで変化させる必要がある。 したがって、RFO のバンチングセクションはタンク 内の 1/3 程度を占め、この領域においてビームは加 速されず、RFO 全体としての加速効率を制限してい る。RFQ タンクの入射部でイオンビームが既にバン チ化されていれば、バンチングセクションが不要に なり RFO 加速器の加速効率の向上や小型化が期待 できる。

短パルスレーザーにより生成されるプラズマ中の イオンは十分短い時間構造を持っていると推定され、 このイオンを膨張前に高周波電場で捕獲できれば、 短パルスイオンを取り出すことができる。このイオ ン源による RFQ へのビーム入射のイメージを図1 に示す。

Figure 1: Schematic image of RFQ with initiallybunched ion beam.

2. イオン生成実験

レーザー生成イオンの高周波電場による捕獲を実 証するために高周波共振器の加速ギャップにおいて 水素ガスを短パルスレーザーによりプラズマ化して 加速される粒子を電流プローブで検出した。実験装 置の構成を図2に示す。

Figure 2: Image of the experimental layout.

[#] fuwa@kyticr.kuicr.kyoto-u.ac.jp

PASJ2015 WEP034

2.1 レーザー

実験には京都大学化学研究所の T6 レーザーを用 いた。レーザーパルスはパルス幅 40fs、レーザーパ ルスエネルギーを 30μ J から 100μ J の間で調整し て 5Hz の繰り返しで照射した。レーザースポットに おいては直径 11 μ m まで集光し、レーリー長は 1mm 程度でレーザーのエネルギー密度は 10^{14} から 10^{15} W/cm² と見積もられる。

2.2 高周波共振器

プラズマ発生領域に高周波電場を印加するために、 RF 共振器を設計・製作した。共振器設計において は放電を起こさない程度の電場勾配において半周期 以内で初速ゼロから水素イオンを加速してギャップ を抜ける必要があることから、周波数 53MHz、 ギャップ間隔は 2mm とした。共振器の形状は既存 の真空チャンバーに設置可能なようにスパイラル型 の共振空胴とし、OPERA/SOPRANO[4]を用いて形 状を設計した(図3)。

Figure 3: Shape of designed RF resonator.

Figure 4: Fabricated RF resonator (seen from upstream).

Figure 5: An entire view of the RF resonator.

Figure 6: An internal view of the RF resonator.

この基本設計をもとに製作した共振器を図 4~6 に示す。コイル部は長さ 1m のステンレスパイプを 曲げ、銅をメッキして製作した。パイプの両端はそ れぞれ空洞内部のガスバルブユニットと空洞外筒の ガス導入ポートに接続され、パイプ内部にガス導入 用のチューブが通っている。ガスバルブユニットの 下流部は 2mm の間隔をあけて空洞端版と対向して おり、この間に高周波電場が励起される。端版には、 ビーム引き出し口としてスリットが設けられており、 スリット形状は幅 10mm 高さ 2mm とした。スリッ トの一端には直径 3mm の穴を設け、レーザー導入 口としたレーザーはこの穴を通り、22.5°の入射角 で、プラズマ生成点に導入される。

2.3 ガスシステム

水素ガスはガスバッファにおいてガス圧を 400Pa に保ち、ガスバルブユニットに導入した。ガスバル ブユニット内部は、ピエゾバルブが設置されており、 1ms の時間幅で水素ガスが加速ギャップに供給され る。

2.4 電流プローブ

イオン電流プローブはセミリジッド同軸ケーブル を用いて製作し、電流検出部の面積は幅 1mm、高 さ 3mm とした(図 7)。このプローブは共振空胴端版 の加速ギャップ出口に取り付けられ、加速ギャップ 出口から検出部までの距離は 2mm である。

Figure 7: Ion probe made by cutting and stripping a semirigid coaxial cable. The probe was attached on a bottom plate.

3. 実験結果

多数回の非同期ショットによる測定を繰り返し、 データを RF 波形とレーザーパルスの計測データか ら求めた位相差の順に並び替えることにより検出さ れた電流の RF 位相依存性を表した図が図 8 である。 横軸はレーザー照射時刻からの経過時間、縦軸が R レーザーパルス照射時の RF 位相、電流値は色で示 されており、赤が正の電流、青が負の電流、緑が電 流の無い場合に対応している。

レーザープラズマ中の電子は、質量が軽いため加 速位相においては短時間(<1 ns)で加速されてプロー ブに到達する。すなわち、図中左下部分のレーザー ショット直後に観測された負の電流は電子の加速位 相でレーザーが照射されたと考えられる。

一方、位相差にして 180°以上の部分には正の電 流が観測された。この信号はイオンによるものと考 えられる。RF 周波数が 53MHz であり、その四半周 期は約 5ns なので、この幅以内の領域で電流が観測 されているところから、これらのイオンはバンチ化 されていると言える。位相差が減るに従って電流値 のピーク位置が遅れていくが、この傾向は1次元シ ミュレーションでも確認されている(図 9)。

Figure 8: The contour plot of current signals for various RF phases.

Figure 9: The simulation result of current signal for various phases.

電場の無い領域でプラズマを生成した場合、プラ ズマはプローブ位置に到達するまでに膨張して、マ イクロ秒程度の時間幅を持つ。ギャップ間にプラズ マがとどまり続けていると、次の RF 周期でも加速 イオンが観測されるはずであるが、こういったイオ ンは検出されていない。すなわち、生成されたプラ ズマは RF 電場により一掃され、分離されたイオン は高周波の一周期内に限定的に捕獲されたと結論づ けられる。

4. まとめ

RFQ 加速器の加速効率の向上を目的として、レー ザープラズマを用いた短パルスイオン源を開発して いる。水素ガスを高周波電場中において短パルス レーザーでプラズマ化することで、高周波バケット に捕獲されたイオンビームを検出した。

謝辞

本研究は挑戦的萌芽研究 23654085 及び JSPS 特別 研究員奨励費の助成を受けたものです。

参考文献

- I. M. Kapchinskii and V. A. Teplyakov, "Linear Ion Accelerator with Spatially Homogeneous Strong Focusing", Prib. Twk. Eksp. 119 (1970).
- [2] T. P. Wnagler,"RF Linear Accelerators",WILEY-VCH, Weinheim, (2008).
- [3] R. A. Jameson, "INTRODUCTION TO RFQ SESSION", Proc. of LINAC 1984, Seeheim, Germany pp. 49-52 (1984), http://accelconf.web.cern.ch/Accelconf/184/papers/mob000 2.pdf
- [4] Vector Field Inc, http://www.vectorfields.com