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Abstract 
In this report, we present a new two particle model for study of beam instabilities in the presence of the space-charge 

force. It is a simple expansion of the well-known two particle model for a strong head-tail instability and is still 
analytically solvable. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the 
space charge tune shift (normalized by the synchrotron tune) and the wake field strength, Υ. The 3-dimensional contour 
plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Many 
simulation results generally indicate that beam instability can be damped by a weak space-charge force, but the beam 
becomes unstable again when the space charge force is further increased. The new two particle model indicates a 
similar behavior. The damping of beam instabilities in weak space-charge regions and its loss in strong space-charge 
regions are explained by a combination of linearized coherent kicks between the space-charge force and the wake fields, 
not by an incoherent tune spread due to the non-linearity of the space-charge force. 

 

1. INTRODUCTION 
In low energy high-intensity hadron machines, the 

space-charge tune shift is an important parameter in the 
design and operation of the machines. The space-charge 
force is also believed to affect the behavior of beam 
instabilities. Many theoretical and simulation studies have 
been made for a better understanding of their interplay [1-
7]. They generally indicate that beam instability can be 
damped when the space-charge force is weak, but the 
beam becomes unstable again when it becomes too strong. 
The mechanism of this loss of the damping effect due to a 
strong space-charge force has not been well understood so 
far. If the damping of beam instabilities is caused by the 
betatron tune spread (Landau damping) due to the non-
linearity of the space-charge force, one may naively think 
that a stronger space-charge force will be more effective 
in damping of beam instabilities. However, many 
simulation results show the contrary. This inversion may 
suggest that the damping phenomenon of beam 
instabilities in a weak space-charge region may come 
from a different mechanism.  

The two particle model has been applied to illustrate 
the mechanism of the strong head-tail instability (or the 
transverse mode-coupling instability [8]) in a very simple 
but insightful way [Reference [9]: Chao, page 179]. This 
two particle model can provide a superb framework for 
study of the space-charge force on beam instabilities just 
by adding new space-charge terms on top of the existing 
wake potential ones. The crucial points in this new model 
are that the resulting equations of motion need to be 

analytically solvable and the final form of solutions 
should be a continuous expansion from the one 
dimensional (the wake strength only) case to two 
dimensional (the wake strength and the space-charge 
strength) case.  

We briefly summarize Chao’s no space-charge model 
in Section II to review the premise and the solution 
techniques of the original two particle model, and derive 
some useful formulae for later use. In Section III and IV, 
we show solutions and stability diagrams for the weak 
and strong space-charge cases, respectively. The 
procedure to identify unstable regions and to compute the 
growth rate is summarized in Section V.  Contour plots 
of the growth rate are presented in flat and 3-dimensional 
ways. The paper is concluded with its findings in Section 
VI. 

2. NO SPACE-CHARGE CASE 
Let us first review the premise and treatment of Chao’s 

original two particle model by closely following his text 
book. We assume that a beam is made of two macro-
particles, each with charge of Ne/2 and each executing 
synchrotron and betatron oscillations. We assume that 
their synchrotron oscillations have equal amplitude, but 
opposite phases. As for the betatron oscillations, we make 
no such assumption. In what follows, we use  s , the 
distance along the circumference, as an independent 
variable of motion. During the first half of the 
synchrotron oscillation period, T𝑠𝑠 = 2π/ω𝑠𝑠, the particle 
2 leads the particle 1 on the synchrotron phase space, and 
only the trailing particle (the particle 1 in the present 
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case) receives transverse kicks from wake fields created 
by the leading particle (the particle 2 in the present case), 
that is a function of the transverse displacement of the 
leading particle. For simplicity, we assume that the wake 
potential is a constant, 𝑊𝑊0, independent of the distance 
between the two particles. The property of the wake 
potential requires that 𝑊𝑊0 ≥ 0. The equations of motion 
for the two particles are 

 

y1′′ + �
𝜔𝜔𝛽𝛽
𝑐𝑐
�
2
𝑦𝑦1 =  𝑁𝑁𝑟𝑟0𝑊𝑊0

2𝛾𝛾𝛾𝛾
𝑦𝑦2,                      (1)                                     

y2′′ + �
𝜔𝜔𝛽𝛽
𝑐𝑐
�
2
𝑦𝑦2 =  0,                           (2)  

                                             
where y′ = 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑, ωβ is the betatron angular frequency, 
c is the speed of light, γ is the Lorentz factor, C is the 
circumference of the machine, and r0 is the classical 
radius of the particle. Similarly during the second half 
period of the synchrotron oscillation, we have the same 
equations with indices 1 and 2 exchanged.  

The solution for 𝑦𝑦2  is simply a free betatron 
oscillation: 

 
y�2(𝑑𝑑) = y�2(0)𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑠𝑠/𝑐𝑐,                         (3) 

                                                
where 
 
y�2 = 𝑦𝑦2 + 𝑖𝑖 𝑐𝑐

𝜔𝜔𝛽𝛽
𝑦𝑦2′ .                             (4) 

 
The solution for 𝑦𝑦1 is simplified when the betatron 

frequency is much larger than the synchrotron one, 
𝜔𝜔𝛽𝛽 ≫ 𝜔𝜔𝑠𝑠, which is mostly the case. It is then 
approximately given by  

 
y�1(𝑑𝑑) = y�1(0)𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑠𝑠/𝑐𝑐 + 𝑖𝑖Υy�2(0)𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑠𝑠/𝑐𝑐 ,         (5) 
                               
where we have defined a positive dimensionless 
parameter for the wake potential strength 

 
Υ =  𝜋𝜋𝑁𝑁𝑟𝑟0𝑊𝑊0𝑐𝑐2

4𝛾𝛾𝛾𝛾𝜔𝜔𝛽𝛽𝜔𝜔𝑠𝑠
 .                               (6)    

                                                    
We can write the solutions for the equations of motion 
during the period 0 < s

c
< 𝑇𝑇𝑠𝑠/2 in a matrix form as 

 

�y�1y�2
�
𝑠𝑠=𝑐𝑐𝑐𝑐𝑠𝑠/2

= 𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑐𝑐𝑠𝑠/2 �1 𝑖𝑖Υ
0 1 � �

y�1
y�2
�
𝑠𝑠=0

.           (7)                               

 
The transfer matrix during the second half of the 

synchrotron oscillation period, 𝑇𝑇𝑠𝑠/2 < s
c

< 𝑇𝑇𝑠𝑠, is obtained 
by exchanging the indices 1 and 2 in the above treatment. 
The total transfer matrix for one full synchrotron 
oscillation period is then given by 

 

�y�1y�2
�
𝑠𝑠=𝑐𝑐𝑐𝑐𝑠𝑠

= 𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑐𝑐𝑠𝑠 � 1 0
𝑖𝑖Υ 1� �

1 𝑖𝑖Υ
0 1 � �

y�1
y�2
�
𝑠𝑠=0

 

= 𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑐𝑐𝑠𝑠 � 1 𝑖𝑖Υ
𝑖𝑖Υ 1 − Υ2� �

y�1
y�2
�
𝑠𝑠=0

.                  (8)  

 
Let us find eigenvalues λ of this matrix by equating it 

as 
 

𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑐𝑐𝑠𝑠 � 1 𝑖𝑖Υ
𝑖𝑖Υ 1 − Υ2� �

y�1
y�2
�
𝑠𝑠=0

=  𝑒𝑒−𝑖𝑖𝜔𝜔𝛽𝛽𝑐𝑐𝑠𝑠 ∙ 𝜆𝜆𝐈𝐈 �y�1y�2
�
𝑠𝑠=0

, (9) 

 
where I is the unit matrix.                  

The two eigenvalues are found to be 
 

λ =

⎩
⎨

⎧ 1 − Υ2

2
± �Υ2

2
∙ �Υ

2

2
− 2�        𝑖𝑖𝑖𝑖 Υ2 ≥ 4

1 − Υ2

2
± 𝑖𝑖�Υ2

2
∙ �2 − Υ2

2
�       𝑖𝑖𝑖𝑖 Υ2 ≤ 4

 .      (10)                         

 
Let us check the stability of the system for the two 

cases. If Υ2 ≤ 4, the square of the absolute value of λ 
becomes 
 

|𝜆𝜆|2 = �1 − Υ2

2
�
2

+ Υ2

2
∙ �2 − Υ2

2
� = 1.            (11) 

                                  
Namely, the system is stable. If Υ2 ≥ 4,  one of the 
solutions, 
 

𝜆𝜆 = 1 − Υ2

2
− �Υ2

2
∙ �Υ

2

2
− 2� ≤ −1               (12)   

                                    
with its amplitude larger than one, is unstable. At the 
threshold value of Υ2 = 4 , the eigenvalue 𝜆𝜆 becomes 
exactly minus one (𝜆𝜆 = −1). It can be expressed in the 
complex phase space as 
 
𝜆𝜆 = 𝑒𝑒±𝑖𝑖𝜋𝜋.                                   (13)                                                        
 
It indicates that during the full synchrotron oscillation 
period, the coherent betatron frequency shift, 
∆𝜔𝜔𝛽𝛽 , generates a betatron phase advance by ±π. In other 
words, 
 
 �𝜔𝜔𝛽𝛽 + ∆𝜔𝜔𝛽𝛽� ∙ 𝑇𝑇𝑠𝑠 = 𝜔𝜔𝛽𝛽 ∙ 𝑇𝑇𝑠𝑠 ± 𝜋𝜋.                (14)    
                                     
It implies that the strong head-tail instability occurs by the 
mode coupling between the two solutions when the 
difference of their phase advances over one synchrotron 
period becomes exactly 2π. The growth rate g, when 
Υ2 ≥ 4, is obtained by equating  
 

|𝜆𝜆| = 𝑒𝑒𝑔𝑔𝑐𝑐𝑠𝑠 = �Υ2

2
∙ �Υ

2

2
− 2� + Υ2

2
− 1.            (15) 

 
The formula for the growth rate is                       
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𝑔𝑔 = 1
𝑐𝑐𝑠𝑠

log ��Υ2

2
∙ �Υ

2

2
− 2� + Υ2

2
− 1�.             (16)  

3. WEAK SPACE-CHARGE CASE  
  Now, let us introduce the space-charge force into the 
two particle model. Here, we make the following two 
approximations: 
1. The space-charge force is linear in the relative 

distance between the two particles (the linear model). 
2. The two particles interact continuously and 

coherently with a space charge force in the 
transverse plane (the continuous interaction model). 

At a low energy where the space-charge force is 
significant, the space-charge fields spread out angularly 
with a large spread on the order of 1/γ, unlike a high-
energy electron beam where the space-charge fields are 
Lorentz contracted into a thin disk. In this sense, two 
particles behave like rods, not point charges, each with a 
half bunch length of the total beam. 

Under this linearized continuous interaction model, we 
have additional space charge terms in the equations of 
motion for the period 0 < s

c
< 𝑇𝑇𝑠𝑠/2 as  

 

y1′′ + �
𝜔𝜔𝛽𝛽
𝑐𝑐
�
2
𝑦𝑦1 = 𝐾𝐾(𝑦𝑦1 − 𝑦𝑦2) + 𝑊𝑊𝑦𝑦2,                                    

y2′′ + �
𝜔𝜔𝛽𝛽
𝑐𝑐
�
2
𝑦𝑦2 =  𝐾𝐾(𝑦𝑦2 − 𝑦𝑦1).                  (17)                               

 
Here, we define W as 
 
𝑊𝑊 = 𝑁𝑁𝑟𝑟0𝑊𝑊0

2𝛾𝛾𝛾𝛾
                                  (18)                                                    

 
and K denotes the space-charge kick strength: 
 
𝐾𝐾 = 𝑁𝑁𝑟𝑟0

𝑎𝑎2𝛽𝛽2𝛾𝛾3𝛾𝛾
 ,                               (19)                                                     

 
where a is the transverse beam size and β is the Lorenz β. 
The properties of the wake potential and the space charge 
force require that the both W and K are always positive 
 
W, K ≥ 0.                                  (20)                                                      
 
The ratio r=K/W can be expressed in a more familiar way, 
using Υ (defined by Eq. (6)) and the space-charge tune 
shift parameter ∆ν𝑠𝑠𝑐𝑐(normalized by the synchrotron tune 
𝜈𝜈𝑠𝑠), as 
 
 r = 𝜋𝜋

2Υ
�∆ν𝑠𝑠𝑠𝑠
𝜈𝜈𝑠𝑠
�.                                (21)    

                                                 
The transfer matrix during the second half of the 
synchrotron oscillation period, 𝑇𝑇𝑠𝑠/2 < s

c
< 𝑇𝑇𝑠𝑠, is obtained 

by exchanging the indices 1 and 2 in Eq. (17). 
Hereafter, we assume that W ≥ K, namely we deal 

with the weak space-charge case. Using the 
eigenvalue/eigenvector technique, the equations of 
motion can be readily solved. The eigenvalues are  

λ =

⎩
⎨

⎧ 1 − Γ2

2
± �Γ2

2
∙ �Γ

2

2
− 2�        𝑖𝑖𝑖𝑖 Γ2 ≥ 4

1 − Γ2

2
± 𝑖𝑖�Γ2

2
∙ �2 − Γ2

2
�       𝑖𝑖𝑖𝑖 Γ2 ≤ 4

  .     (22)                         

 
Here we define Γ as 
 
Γ2

2
= 2 ∙ 1−𝑦𝑦

2

𝑦𝑦2
∙

tanh2�Υ2y�

1−tanh2�Υ2y�
,                  (23) 

 
where the wake potential strength parameter Υ is defined 
by Eq. (6) and y is given by 
 
y = 2�𝑟𝑟(1 − 𝑟𝑟) .                            (24) 
 

The threshold value of  Υ as a function of the ratio r 
up to r=1 for the weak space-charge case (r=K/W≤1) is 
plotted in Fig. 1. Unstable regions are shown shaded.  

 

Figure 1: The stability diagram for the weak space-charge 
case (r=K/W≤1). Unstable regions are shown shaded. 
 

The two eigenvalues for Γ2 ≤ 4 can be expressed by 
the left schematic of Fig. 2 in the complex phase plane. 
The angles between these vectors and the positive real 
axis are the phase advances of head-tail modes after one 
synchrotron oscillation period. They line up on the 
negative real axis (the right schematic of Fig. 2) when Γ 
is two or when the difference of their phase advances over 
one synchrotron period becomes exactly 2π.  

 

 
Figure 2: Schematics of the eigenvalues in the complex 
phase plane. Left for Γ2 ≤ 4 and right for Γ = 2. 
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4. STRONG SPACE-CHARGE CASE  
  The eigenvalues for the strong space-charge case 
(r=K/W≥1) can be expressed by Eq. (22) as well, though 
the parameter Γ is now defined by  
 
Γ2

2
= 2 ∙ 1+𝑦𝑦

2

𝑦𝑦2
∙

tan2�Υ2y�

1+tan2�Υ2y�
.                       (25) 

 
Here the parameter y is defined by  
 
y = 2�𝑟𝑟(𝑟𝑟 − 1).                             (26) 
 

The threshold value of Υ as a function of the ratio r for 
the strong space-charge case (r=K/W≥1) is plotted in Fig. 
3, together with the previous weak space-charge case 
(r≤1). Unstable regions are shown shaded. 

 

Figure 3: The stability diagram for the strong space-
charge case (r=K/W≥1). The stability diagram for the 
weak space-charge case (r=K/W≤1) is also plotted for 
completion. Unstable regions are shown shaded. 

5. PROCEDURE TO IDENTIFY UNSTABLE 
REGIONS AND GROWTH RATE 

We now have the total solution for both the weak and 
strong space-charge regions. We can calculate the 
stability diagram using the following steps for given Υ 
and: 
 
1. Calculate the ratio r 
 
r = 𝐾𝐾

𝑊𝑊
= 𝜋𝜋

2Υ
�∆ν𝑠𝑠𝑠𝑠
𝜈𝜈𝑠𝑠
�.                            (27)  

                                                 
2. If r≤1(the weak space-charge case), calculate y as 
 
y = 2�𝑟𝑟(1 − 𝑟𝑟).                             (28)                                                  
 

2.1 If  

tanh2 �Υ
2

y� ≤ y2,                            (29)                                                  
 
the beam is stable. 
 

2.2 If 

tanh2 �Υ
2

y� ≥ y2,                            (30)                                                    
 
the beam is unstable and the growth rate is given by 
 

𝑔𝑔 = 1
𝑐𝑐𝑠𝑠

log ��Γ2

2
∙ �Γ

2

2
− 2� + Γ2

2
− 1�,             (31)                               

 
where  
 
Γ2

2
= 2 ∙ 1−𝑦𝑦

2

𝑦𝑦2
∙

tanh2�Υ2y�

1−tanh2�Υ2y�
.                      (32)                                       

 
3.  If r≥1 (the strong space-charge case), calculate y as 
 
y = 2�𝑟𝑟(𝑟𝑟 − 1).                             (33)                                                 
 
3.1 If  
tan2 �Υ

2
y� ≤ y2,                              (34) 

                                                   
the beam is stable. 
 
3.2 If 
tan2 �Υ

2
y� ≥ y2,                              (35)                                                   

 
the beam is unstable. The growth rate is given by Eq. (31), 
though the parameter Γ is now defined by  
 
Γ2

2
= 2 ∙ 1+𝑦𝑦

2

𝑦𝑦2
∙

tan2�Υ2y�

1+tan2�Υ2y�
.                       (36)                                         

 
We calculate the growth factor g × T𝑠𝑠 as a function of 

Υ and ∆ν𝑠𝑠𝑐𝑐/𝜈𝜈𝑠𝑠 and plot it in a flat contour plot in Fig. 4  
and in a 3-dimension contour plot in Fig. 5. The three 
parametersg × T𝑠𝑠, Υ and ∆ν𝑠𝑠𝑐𝑐/𝜈𝜈𝑠𝑠  are all dimensionless 
parameters and these contour plots are universal. 

One can see stopband structures in the stability 
diagrams Figs. 4 and 5. The lowest two stopbands are 
strongest (namely, very unstable), while other higher-
order stopbands are considerably weaker.  

The appearance of the stopbands can be explained as 
follows. A mode-coupling instability takes place when the 
two eigenvalues line up on the negative real axis in the 
complex phase plane (see Fig. 2), in other words, when 
the difference of their phase advances over one 
synchrotron period is an odd integer times 2π. In the 
strong space-charge region (∆ν𝑠𝑠𝑐𝑐 ≫ 𝜈𝜈𝑠𝑠), the tune shift of 
one solution is close to −∆ν𝑠𝑠𝑐𝑐 , while other solution has 
almost no tune shift. The mode-coupling condition 
mentioned in the above corresponds to the case when 
∆ν𝑠𝑠𝑐𝑐 takes values around an odd integer times 𝜈𝜈𝑠𝑠. That is 
why the stopbands always start with ∆ν𝑠𝑠𝑐𝑐/𝜈𝜈𝑠𝑠 equal to 
odd integers at small Υ in Fig. 4. Pure space-charge 
oscillations are stable, but even slight inclusion of wake 
filed effects to them can make such oscillations unstable. 
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Figure 4: Flat contour plot for the growth factor g × T𝑠𝑠 
as a function of Υ and ∆ν𝑠𝑠𝑠𝑠

𝜈𝜈𝑠𝑠
. 

 
Figure 5: 3-dimensional contour plot for the growth factor 
g × T𝑠𝑠 as a function of Υ and ∆ν𝑠𝑠𝑠𝑠

𝜈𝜈𝑠𝑠
. 

6. FINDINGS AND CONCLUSIONS 
Let us investigate how the space-charge force affects 

the strong head-tail instability. Take a case of  Υ = 4 
where the beam is unstable without the space-charge 
force (∆ν𝑠𝑠𝑠𝑠

𝜈𝜈𝑠𝑠
= 0). Figure 6 shows the growth rate (× T𝑠𝑠) as 

a function of the space-charge tune shift (normalized by 
the synchrotron tune) at Υ = 4. If we gradually increase 
the space-charge force, the beam moves from the unstable 
region (the lowest stopband) to the stable region (the 
lowest passband). However, if we further increase the 
space-charge force, the beam enters another unstable 
region (the second lowest stopband). The maximum 
growth rate in this unstable region is comparable to that 
for no space-charge case. One may conclude that the 
space-charge force loses its damping effect when it is too 
strong. In fact, many theoretical and simulation studies 
show similar behaviors. If we further increase the space-
charge force, the beam would be stable again. However, it 

is not clear if we can achieve this state in reality or 
computer simulations since such strong space-charge 
force may expand the beam size, with a result of 
reduction of the space-charge tune shift by itself. 

Figure 6: The growth rate (× T𝑠𝑠) as a function of the 
space-charge tune shift (normalized by the synchrotron 
tune) at Υ = 4. 

The present two particle model has no tune spread 
effect, since the space-charge force is linearized in the 
transverse position. The damping of beam instabilities 
with a weak space-charge force is caused by pure 
coherent kicks of the space-charge force in a way to 
partially neutralize the coherent wake field kicks. The loss 
of the damping effect with a strong space-charge force is 
due to an unfavorable combination between the coherent 
space-charge kicks and the coherent wake field kicks. As 
stated in the Introduction, if the damping of beam 
instability with a weak space-charge force is caused by 
the tune spread (Landau damping) due to the non-linearity 
of the space-charge force, its loss with a strong space-
charge force is hard to explain. The present model 
suggests that the main damping mechanism of beam 
instabilities with a weak space-charge force (as observed 
in many simulations) is linear coherent space-charge 
kicks, not the Landau damping due to the non-linearity of 
the space-charge force. 
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