J-PARC Main Ringのビーム位置モニタのゲイン較正

高エネルギー加速器研究機構 加速器研究施設 加速器第一研究系 モニターGr. 久保木浩功

- 導入: Main Ringのビーム位置モニタとゲイン較正
- シミュレーション: Total Least Squareフィッティングの有用性
- ビーム・マッピングデータ解析と結果
- まとめ、展望

外山毅、畠山衆一郎^A、高野淳平、手島昌己

高エネルギー加速器研究機構 ^A三菱電機システムサービス(株)

http://j-parc.jp/Acc/ja/about.html

長谷川和男 (WEOLP02) "J-PARC 加速器のビーム強度の増強"

MR			周長 (m)	156	7.5
			エネルギー (GeV)	3	30
Fastext	raction (FX)		β	0.9712	0.9995
		Lorentz y	4.20	32.97	
4	加速RF空洞 Slow extraction (SX)	ハーモニック数	9		
ニュートリノ 実験施設		バンチ数	8		
		1	周回周期 (μsec)	5.38	5.23
		RF周波数 (MHz)	1.67	1.72	
		バンチ長(時間) (nsec)	200	70	
		バンチ長(空間長) (m)	60	20	
		チューン	FX: $v_x=22.40$, $v_y=20.75$ SX: $v_x=22.30$, $v_y=20.78$		
		ビーム位置モニタ数	186台 (1台	<mark>∖/7-10 m)</mark>	
			大強度化⇒ビームロスの軽減		
•					
500 m		安定したビーム	ム中心軌道	が必要	

500 m

BPM データ取得システム

ビーム強度によって異なる処理回路設定

ビーム位置と出力電圧の関係

電極からの出力電圧のバランスの変化

- コネクタ接続部の接触抵抗の変化
- 周辺の環境温度によるケーブルの伝送特性の変化

● 信号処理回路の経年変化、等

$$V_i = q g_i f_i(x) \quad (i = L, R, U, D)$$

g_L, g_R, g_U, g_D	各電極からの応答ゲイン
V_L, V_R, V_U, V_D	各電極L,R,U,Dからの出力電圧
q	BPM内部に存在するビームの電荷
$f_i(x)$	出力電圧の応答関数
<i>x</i> , <i>y</i>	水平、垂直方向のビーム位置
а	BPM中心から電極内面の実効半径

対角線カット型電極のため、 広い範囲で線形応答が確保

ビームを用いたゲイン較正 (Beam Based Gain Calibration)

*T. Toyama et al., Proc. of PASJ meeting (2014).

ビームを用いたゲイン較正 (Beam Based Gain Calibration)

BBGC手順

位置の導出式 $\begin{cases} x = \frac{V_L/g_L - V_R/g_R}{V_L/g_L + V_R/g_R}a \\ y = \frac{V_U/g_U - V_D/g_D}{V_U/g_U + V_D/g_D}a \end{cases}$
$ \bigstar V_L = -\frac{V_R}{\widetilde{g_R}} + \frac{V_U}{\widetilde{g_U}} + \frac{V_D}{\widetilde{g_D}}, \qquad \left(\widetilde{g}_{R,U,D} = \frac{g_{R,U,D}}{g_L}\right) $
$G_{R,U,D} = \frac{1}{\tilde{g}_{R,U,D}}$
$-G_RR + G_UU + G_DD = L$ 表記を簡単化

ゲイン較正

連立方程式 X·G=Lを解くことに帰着

 $-G_R R + G_U U + G_D D - L = 0$

に対する法線ベクトル

解法

シミュレーション例

①: ゲインの値を設定

$$V_L = qg_L \frac{1}{2} \left(1 + \frac{x}{a}\right)$$
 $(g_L, g_R, g_U, g_D) = (1.00, 1.01, 1.005, 0.975)$

 ②: 位置の設定
 $V_L = qg_L \frac{1}{2} \left(1 + \frac{x}{a}\right)$
 $-2 \le x \le 2, -2 \le y \le 2, \pm 25 \pm (5\pi ICM)$

 ③: 各位置での出力電圧を計算
 $V_L = qg_L \frac{1}{2} \left(1 + \frac{x}{a}\right)$

 ④: ガウス分布に従うΔV/V = 0.2% のランダムノイズを生成

 ⑤: 1つの位置で500点のデータを生成

 a: オフラインでの較正結果

 V_{L}

シミュレーション例

①: ゲインの値を設定
$$V_L = qg_L \frac{1}{2} \left(1 + \frac{x}{a} \right)$$
 $(g_L, g_R, g_U, g_D) = (1.00, 1.01, 1.005, 0.975)$
②: 位置の設定 $V_L = qg_L \frac{1}{2} \left(1 + \frac{x}{a} \right)$ $-2 \le x \le 2, -2 \le y \le 2, \pm 25 \pm (\overline{A} \otimes \mathbb{Z})$

8

③: 各位置での出力電圧を計算 $V_L = qg_L \frac{1}{2} \left(1 + \frac{x}{a} \right)$

④: ガウス分布に従う△V/V = 0.2% のランダムノイズを生成

⑤:1つの位置で500点のデータを生成

⑥: 出力電圧データからゲインを導出、位置を再計算

フィッティング解析結果

	g_R	g_U	g_D
True	1.010	1.005	0.975
LS	1.034	1.015	0.988
TLS	1.012	1.005	0.977

LS: Least Square Fitting TLS: Total Least Square Fitting

$$\begin{pmatrix} -R_{1} & U_{1} & D_{1} \\ & & \\ \vdots & \vdots & \vdots \\ -R_{n} & U_{n} & D_{n} \end{pmatrix} \begin{pmatrix} G_{R}(=1/g_{R}) \\ G_{U}(=1/g_{U}) \\ G_{D}(=1/g_{D}) \end{pmatrix} = \begin{pmatrix} L_{1} \\ \vdots \\ L_{n} \end{pmatrix}$$

 g_R, g_U, g_D で割った場合も同様の結果であることを確認 $\square > TLSの適用は有効$

ビーム・マッピングデータ取得

複数の出力電圧のデータ → 複数の位置データ $-G_R R_i + G_U U_i + G_D D_i = L_i$ 1) ステアリング磁石で閉軌道にキックを加え、振動振幅が大きい軌道を生成。 2) 複数の振幅のデータ、位相をずらしたデータも取得。 3) 出力電圧データセットを最もよく再現するようにゲイン(g_R, g_U, g_D)を決める。

ビーム・マッピングデータ解析

● ゲインは処理回路の設定によって変動

	粒子数 Protons/pulse	Amp. gain	Low Pass Filter
低強度	2 × 10 ¹³	×5	OFF
大強度	1 × 10 ¹⁴	×2	ON

FFT後のスペクトル3.34 MHzのピークを出力電圧L,R,U,Dとしてゲインを算出

解析ゲインの妥当性:異なる導出法での位置のコンシステンシー

低強度でのBPM測定置と真のビーム位置との関係

ビーム位置 BPM測定値

$$\begin{pmatrix} x_{beam} \\ y_{beam} \end{pmatrix}_{Low} = \begin{pmatrix} \tilde{x}_{MON} \\ \tilde{y}_{MON} \end{pmatrix}_{Low} - \begin{bmatrix} \begin{pmatrix} \Delta x_{Q-BPM} \\ \Delta y_{Q-BPM} \end{pmatrix} + \begin{pmatrix} \Delta x_{gain} \\ \Delta y_{gain} \end{pmatrix}_{Low} \end{bmatrix}$$
 ※厳密には補正用回転行列
等を考慮して補正
 $\begin{pmatrix} \Delta x_{BBA} \\ \Delta y_{BBA} \end{pmatrix}_{Low} \leftarrow 低強度でのBBAデータ(取得済)$
大強度時
 $\begin{pmatrix} x_{beam} \\ y_{beam} \end{pmatrix}_{High} = \begin{pmatrix} \tilde{x}_{MON} \\ \tilde{y}_{MON} \end{pmatrix}_{High} - \begin{bmatrix} \begin{pmatrix} \Delta x_{BBA} \\ \Delta y_{BBA} \end{pmatrix}_{Low} - \begin{pmatrix} \Delta x_{gain} \\ \Delta y_{gain} \end{pmatrix}_{Low} + \begin{pmatrix} \Delta x_{gain} \\ \Delta y_{gain} \end{pmatrix}_{High} \end{bmatrix}$
大強度用ゲインへ入替
 $\begin{pmatrix} \Delta x_{BBA} \\ \Delta y_{BBA} \end{pmatrix}_{High}$
• 解析したゲインと取得済のBBAデータを用いて、大強度用BBAオフセットを算出

較正したゲインを用いることで大強度時のCOD補正の改善が期待

- BPM位置精度向上のため、ビームを用いたゲイン較正 (BBGC)を行った
- パルスあたり10¹³、10¹⁴のビーム強度用回路設定において、1電極あたりの誤差 ~0.6%でゲインを決定
- 解析したゲインを用いたBBAオフセットを解析中

展望

- ◆ 大強度時のCOD補正改善を確認
- ◆ BPM位置誤差の切り分け(据付誤差+ゲイン誤差)
- ◆ 大強度利用運転への実用化に向け、補正・運用手法を確立