PASJ2015 THP089

cERL 入射器超伝導空洞の高次モードによるビーム位置測定 BEAM POSITION MEASUREMENT USING HIGHER-ORDER-MODE OF INJECTOR SUPERCONDUCTING CAVITY AT CERL

本田洋介 *^{A)}、帯名崇 ^{A)}、梅森建成 ^{A)}、阪井寛志 ^{A)}、加古永治 ^{A)}、宮島司 ^{A)} Yosuke Honda^{* A)}, Takashi Obina^{A)}, Kensei Umemori^{A)}, Hiroshi Sakai^{A)}, Eiji Kako^{A)}, Tsukasa Miyajima^{A)}

^{A)}High Energy Accelerator Research Organization (KEK)

Abstract

cERL is a test accelerator of an energy recovery linac scheme which can realize a high quality beam in a high averaged current. In order to realize a low emittance beam, beam orbit control in the superconducting accelerating cavity is important. The injector cavity has higher-order-mode (HOM) couplers. Since excitation of a dipole mode depends on beam offset with respect to the field center, it can be used for a direct beam position measurement in the cavity. We have developed a dedicated detection electronics, compared signal from various HOM ports, and measured beam orbit at the three cavities in the injector module. This HOM-BPM system is now effectively used in daily beam tuning.

1. はじめに

エネルギー回収型線形加速器 (ERL) は、線形加速器 の特長である低エミッタンスかつ短バンチの電子ビー ムを、エネルギー回収の原理のもとに大電流で運転す ることを可能にする加速器である。KEK に建設された cERL は、将来の大型 ERL 加速器に向けた試験加速器 で、加速器要素の開発と、大電流かつ高性能のビームの 実証を目的としてビーム運転を行っている。

低エミッタンスビームを実現するには、入射器での エミッタンスの悪化をできるだけ抑える必要がある。特 に加速空洞でのビーム軌道が加速電場の中心からずれ ると、時間に依存した収束力の変化により、エミッタン スが悪化する。超伝導加速空洞は、クライオモジュール の内部に収められており、外部から機械的に空洞の中心 を決めることは難しい。これまでは、加速位相を変化さ せ、そのときの下流でのビーム位置変化を測定する、と いう手法で調整を行っていた。しかし、この方法は、入 射器加速空洞を構成する3台の空洞について独立に測 定することが困難で、また、位相のスキャンに時間がか かるという問題があった。そこで、新たな手法として、 空洞高次モード (Higher Order Mode: HOM) によるビー ム位置測定法の開発を行っている。各空洞の信号から直 接的に電場中心にたいするビーム軌道のずれを測定す ることが可能で、より簡便に軌道調整が行えるように なった。

2. HOM によるビーム位置測定の原理

加速空洞をビームが通過する際に、多数の空洞モー ドが励起される。大電流ビームによって励起された高次 モードが空洞の熱負荷になったり、ビームに影響を与え たりするのを防ぐため、cERLの入射器超伝導空洞には HOM カプラーが備えられており、高次モードを空洞か ら取り出す設計になっている^[1]。

注目するモードの角周波数をω、HOM ポートの外部 Q 値を *Q_{ext}、*としたとき、バンチ電荷 *q* のビームの通 過によってポートから取り出される信号のパワー *P_{out}* は、

$$P_{out} = \frac{\omega q^2}{4Q_{ext}} (R/Q) \tag{1}$$

で与えられる。R/Qは、ビームとモードの相互作用の大 きさを反映する量である。高次モードのうち、とくにダ イポールモード (TM110)は、空洞中心に節を持つので、 中心からの距離に比例した振幅で励起される。

空洞に励起された信号が減衰する時定数を τ とする と、 $\tau = Q_L/\omega$ で、単バンチによって空洞に生じる電圧 信号は

$$V_1(t) = V_0 e^{-\frac{t}{2\tau}} e^{i\omega t} \tag{2}$$

である。多バンチビームの場合は、これがバンチ間隔*tb* だけ時間をずらしながら重なったものになるので、

$$V_{\infty} = \sum_{n=0}^{\infty} V_1(t+nt_b) \tag{3}$$

の電圧信号が発生することになる。バンチ繰り返しが モードの周波数と整数関係に近い場合は、これが時定数 程度のバンチ数でコヒーレントに足し合わせで働くと 考えられる。

今、バンチ電荷 $q = 7.7 \text{ pC/bunch}, \omega = 2\pi \times 1.8 \text{ GHz},$ $Q_{ext}(\text{for 1 port}) = 30000, Q_L = 7000, \text{R/Q=0.04} \Omega(\text{for 1 mm offset}) と仮定すると、単バンチで測定される信号パワーは、<math>P_{out} = 2.5 \text{ nW}$ となる。また、時定数は $2\tau = 1.2 \mu s$ となり、バンチ繰り返しが 162.5 MHz とすると、時定数程度の時間に 100 バンチ程度が重ね合わされた信号が得られることになる。足し合わせの位相関係にも依存するが、 $-70 \sim -50 \text{ dBm}$ の信号を検出できれば、1 mm 以下の精度でビーム位置を測定できると見積もられる。

3. 測定のセットアップ

3.1 入射器空洞とレイアウト

入射器加速空洞には、2 セルの 1300 MHz 超伝導空洞 で、Figure 1 に示すように、5 つの HOM カプラーが設 置されている。今回は、空洞上流側にある 3 つのポート を用いて試験を行った。

^{*} yosuke@post.kek.jp

PASJ2015 THP089

Figure 1: HOM couplers in the 2-cell cavity.

Figure 2 に全体のセットアップを示す。各 HOM カプ ラーは、クライオモジュール内を同軸ケーブルで接続さ れ、モジュール下部に用意された N 型同軸フィードス ルーから信号が取り出される。この信号は、もともと方 向性結合器を介して終端されており、ビームのモニタに は使用していなかった。終端されていたポートから RF ケーブルで加速器シールドの外に取り出し、新たに用意 した検出回路に入力した。

電子銃で生成された 390 keV のビームが入射器加速 空洞に入射され、3 台の 2 セル空洞で最大 6 MeV まで 加速される。クライオモジュールの直ぐ上流に、水平垂 直のステアリング電磁石 (ZH4,ZV5) があり、本実験で はこれを利用してビーム軌道を調整する。下流にはスク リーンモニタ (MS3) があり、ステアリングのキック量 の校正に使用した。

Figure 2: Layout of the injector.

3.2 検出回路

検出回路を設計する際、測定に不必要な信号を出来 る限り除去することが重要である。加速モードである 1300 MHz の信号と、ビーム繰り返しの整数倍で直接励 起され得る N×162.5 MHz の信号が測定されないよう に、Figure 3 に示すような 2 段階のヘテロダイン検出 回路を用いた。最上流に設置した周波数フィルタに加 えて、1 段階目の LO を 1300 MHz とすることで、加速 モードを取り除いている。また、2 段目の LO を 487.5 MHz とすることで、測定モードに再近接のビーム繰り 返し周波数である 1787.5 MHz (=11×162.5 MHz) を取 り除く設計である。これらの LO は、加速器のマスター オシレータと同期させており、ビーム調整運転の典型的 なビーム繰り返し (5 Hz) においては、ダウンコンバー ト信号は位相が固定されたものが得られる。

TM110 のダイポールモードは、1801 MHz(個体差は 3 MHz 程度) であるので、ダウンコンバートされて 14 MHz 程度の信号として検出される。

Figure 3: Scheme of the electronics.

4. ビーム信号

4.1 信号波形

測定される典型的な信号を Figure 4,5 に示す。それぞれ、水平または垂直方向にビーム軌道オフセットをつけて測定したものである。ビームは 162.5 MHz のバン チ繰り返しで時間幅 1 µs のマクロパルス構造である。 ビーム時間内はバンチ繰り返しの周波数で励起される ため、今の検出回路では信号は出力されない。ビームパ ルスの終了時点から空洞固有周波数の信号が立ち上が り、振動しながら減衰していく。複数のモードのうなり のような波形が見られるが、現時点では完全に理解され てはいない。波形を拡大すると、軌道のオフセットの方 向に応じて、位相が反転することが確認できる (図中に 拡大図を示した)。

Figure 4: Waveform at horizontal beam offset (HOM4).

4.2 ポートの感度の比較

3 チャンネルの同等な回路を用意し、上流側の 3 つ の HOM ポート (HOM3, HOM4, HOM5) の信号を比較 した。ある時間内での波形の peak-to-peak 値を信号の大 きさとし、ステアリング電磁石 (ZH4,ZV4) を用いて軌

PASJ2015 THP089

Figure 5: Waveform at vertical beam offset (HOM4).

道を動かしながら測定を行った。Figure 6 は空洞1の水 平方向スキャン、Figure 7 は垂直方向スキャンの結果で ある。HOM4 ポートは、水平、垂直のどちらにも感度 があるが、HOM3,5 ポートは垂直に感度が小さいことが 分かった。

Figure 6: Comparison of ports (horizontal scan).

Figure 7: Comparison of ports (vertical scan).

5. ビーム軌道の調整

HOM4 ポートが両平面に感度が高いことが分かった ので、検出回路を各空洞の HOM4 ポートに測定し、3 つの空洞でのビーム位置を同時に測定した。ビーム条件 は、バンチ電荷 7.7 pC/bunch、パルス時間幅 1 μs、電子 銃のビームエネルギー 390 keV、入射器空洞で加速後の ビームエネルギー 4.9 MeV である。やはり信号波形の peak-to-peak を信号強度として読み取り、空洞上流のス テアリング電磁石 (ZH4,ZV4) をスキャンした。Figure 8 は水平方向の、Figure 9 は垂直方向の結果である。V 字 型の応答が得られ、その最小点で空洞中心をビームが通 過していることになる。このデータでは、水平方向は概 ね 3 空洞の中心を通過しているが、垂直方向にはシフ トしていることが分かる。

ステアリング電磁石の電流値とビーム位置の校正は、 空洞オフの条件で下流のスクリーンモニタと対応させ て行った。加速時には空洞自体の収束効果があるので、 ビーム軌道は必ずしも直線では無いが、少なくとも空洞 1までは初期ビームエネルギーで自由空間を通過すると 考えて良い。図に書き込んだスケールから、1mmの精 度で軌道を評価することが可能と思われる。

Figure 8: Measurement of 3 cavities (horizontal scan).

Figure 9: Measurement of 3 cavities (vertical scan).

6. まとめ

ビーム調整時のマクロパルス運転において、入射器超 伝導空洞の HOM カプラーの信号を検出した。振幅が空 洞中心で最小で、オフセット量に線形に応答、方向で位 相が反転、する特性を確認した。この信号を利用して、 ビーム軌道の調整を行っている。

参考文献

 K. Watanabe, et al., "Development of the superconducting rf 2-cell cavity for cERL injector at KEK", Nucl. Instrum. Meth. A, 714, 67-82 (2013).