PASJ2015 THP063

L バンド 800kW クライストロン用永久集束磁石

PERMANET MAGNET FOCUSING SYSTEM FOR L-BAND 800 KW KLYSTRON

不破康裕^{#,A)}, 岩下芳久^{A)}, 松本利広^{B)}, 道園真一郎^{B)}, 福田茂樹^{B)} Yasuhiro Fuwa^{#,A)}, Yoshihisa Iwashita^{A)}, Toshihiro Matsumoto^{B)}, Shinichiro Michizono^{B)}, Shigeki Fukuda^{B)} ^{A)} Institute for Chemical Research, Kyoto University ^{B)} High Energy Accelerator Research Organization

Abstract

Applying permanent magnet technology to beam focusing in klystrons can reduce power consumption and increase reliability. These features benefit a variety of applications especially for lager facilities that use a large number of klystrons such as the International Linear Collider. In order to evaluate the feasibility of such a focusing system with ferrite magnets, a test model of the power test, we attained 90 % of the output power compared to an electromagnet. The difference of output power between permanent magnet and electromagnet is due to transverse magnetic field of permanent magnet system.

1. はじめに

クライストロン中の電子ビームは大電流であるた め、外部磁場によるビーム集束が必要になる。この 集束磁場の強度は1kG程度であり、発生には通常電 磁石ソレノイドが用いられる。このコイルによる消 費電力は1kW程度であるが、ILCのような大規模施 設においてはクライストロンの台数が数千台に及ぶ ため、その消費電力を合わせると数MWを消費する ことになる。この電力はILCの運転電力の数%に相 当するものである。集束磁場を永久磁石で発生でき れば、コイル消費電力だけでなく付随する冷却水 系・電源系も不要となりそれらの消費電力や故障の 可能性を抑制できる。

本研究においては、ILC の RF 電力供給方式の1 つとして提案された DRFS (Distributed RF Scheme) [1]用に製作された 800kW クライストロンに対して 永久磁石による集束システムを試作してクライスト ロン出力試験を実施している。

2. 集束磁石の試作

本研究で試作した磁石は DRFS の高周波源として 東芝電子管デバイスにより製作された E37501[2]を 用いた出力試験が実施できるように製作された。 E37501の外観と性能諸元をそれぞれ図1、表1に示 す。

永久磁石を用いた集束磁石の磁場設計に先立つ集 束システムの概念設計においては過去に実施された 永久磁石によるクライストロン用集束磁石の適用例 [3][4]を参考にした。永久磁石による集束システムの 大きな問題点は磁場調整が困難であることと漏れ磁 場が大きいために取り扱いや保管に注意を要する点 である。これらの問題を解決するために保磁力が強 く安価な異方性フェライトを用いた可動の磁石部材 を用いて磁場調整機構を設けること、及び漏れ磁場

Figure 1: Pictures of E37501.

Table 1: Specification of E37501

Frequency	1.3 GHz
Max Output Power	750 kW
Max Efficiency	55 %
Max Gain	43 dB
Max Pulse Length	1.5 msec
Max Repetition Rate	5 Hz
Max Beam Voltage	66 kV
Max Beam Current	50 A

を低減するために Halbach 配置に近い磁石配置を採 用することとした。これらの機能特性を取り入れ Radia4.29[5][6]を用いた磁場計算により磁石を設計 した。採用した磁石設計を図2に示す。この磁石の 設計の詳細については参考文献[7]に記述されている。

[#] fuwa@kyticr.kuicr.kyoto-u.ac.jp

PASJ2015 THP063

Figure 2: An image of the designed magnet.

3. クライストロン出力試験

製作した集束磁石を用いて KEK STF 棟内におい てクライストロンの出力試験を実施した。実験にお いては予期せぬビームロスによるクライストロン破 損を防ぐために RF パルス幅を 500 µ s、繰り返し周 期を 1Hz に設定してクライストロンを運転した。ま た、比較のために電磁石を用いた試験も永久磁石に よる試験に先立ち実施した。

試験の結果を図3に示す。横軸はカソード電圧、 縦軸は出力電力を示しており、赤が電磁石を用いた 場合の出力、青が永久磁石を用いた場合の出力であ る。これを見るとカソード電圧 63.5kV の場合に永 久磁石の場合の出力が電磁石の場合と比べて 10%程 度低いことがわかる。

4. 考察

出力が電磁石と永久磁石で異なった原因は大きく 分けて2つ考えられる。1つは磁石の形状のばらつ きに起因する横方向の磁場、もう1つは磁石を分割 して用いたために磁石の対称性が崩れていることに 起因する多極磁場の影響である。

図4は横方向の磁場に対する典型的な測定値であ る。この図から8ガウス程度の横方向磁場が存在し ていることがわかる。この影響を評価するため永久 磁石システムの中段磁石位置に微小変化を与えた場 合の出力への影響を調べた。結果を図5に示す。磁 石を1mm ずつ変位させた場合に出力が変化し、あ る点で最適値を示すことがわかった。1mmの位置変 化は中心軸上の3ガウスの横方向磁場の変化を与え

Figure 4: Typical distribution of transverse magnetic fields.

Figure 5: Measured output power with deviations of magnet position.

るため、横方向磁場を3ガウス程度に低減すること ができれば、出力の低下を最適値から1%程度に抑 えることができると期待される。

多極磁場は特に縦方向磁場の絶対値が小さいカ ソード領域で影響が大きいと考えられる。図6はカ ソード領域において中心軸から 10mm はなれた円上 において測定した磁場から計算した n=2 までの多極 磁場の分布である。図中の赤、青、緑はそれぞれ n=0、1、2 の多極成分の強度に対応しており、破線 が電磁石に対する結果、破線が永久磁石に対する測 定結果に対応している。この結果から永久磁石の n=2、すなわち 4 極成分が電磁石のものより 1 桁程 度大きいことがわかる。この影響によりビームの対 称性が崩れビームロスが発生していると考えられる。

Figure 6: Measured distributions of multipole fields. z = 0 corresponds cathode position.

これらの横磁場・多極磁場を低減するためにはより精密な磁場調整が必要となる。磁石位置は現状 0.5mmの精度で調整しており、これ以上精度をあげ ることは可能であるものの調整時間がかかり望まし いとは言えない。そのためケイ素鋼板の積層による 磁気フィルターを設置して、縦方向の磁場を維持し つつ、横方向のみを低減する方法を検討している。 Radia 4.29 を用いた模擬計算の結果厚さ 0.5mm 程度 のケイ素鋼板を 12.5mm 間隔で積層すると、横方向 磁場をフィルターが無い場合の無い場合の 10%程度 に低減できることがわかった。この結果をもとに図 7 のような磁気フィルターを製作している。この フィルターの導入により電磁石と同等の出力が得ら れると考えられる。

5. まとめ

クライストロンの集束コイルにおける消費電力の 削減、故障率の低減を目的として永久磁石による集 束システムを開発している。L バンド 800kW クライ

Figure 7: Image of anisotropic magnetic field filter.

ストロンに対して試作磁石を製作しパワーテストを 実施した結果、電磁石の場合の 90%程度の出力が得 られることがわかった。この違いは永久磁石システ ムの横方向磁場や多極磁場の影響によるものと考え られる。これらの不要な磁場を異方性次期フィル ターにより抑制することで、電磁石と同程度の出力 が得られると考えられる。

参考文献

- S. Fukuda, Distributed RF Scheme (DRFS) Newly Proposed HLRF Scheme for ILC, LINAC2010, Tsukuba, pp.112-114, 2010.
- [2] http://www.toshiba-tetd.co.jp
- [3] Jane V. Lebacqz, Status Report on Klystron Improvements, IEEE, Trans., NS-22, 3 pp.1324-1327, June1975.
- [4] Fukuda, S., Shidara, T., Saito. Y., Hanaki, H., Nakao, K., Homma. H., Anami, S., Tanaka, J., PERFORMANCE OF HIGH POWER S BAND KLYSTRONS FOCUSED WITH PERMANENT MAGNET, 198624009 KEK-86-9, Feb. 1987.
- [5] P. Elleaume, O. Chubar, J. Chavanne, Computing 3D Magnetic Field from Inserted Devices, proc. of the PAC97, May 1997, p.3509-3511.
- [6] O. Chubar, P. Elleaume, J. Chavanne, A 3D Magnetostatics Computer Code For Insertion Devices, SRI97 Conf. Aug. 1997, J. Synchrotron Rad. (1998). 5, 481-484.
- [7] Fuwa, Y., et al., "Focusing System With Permanent Magnets for Klystrons", IEEE TRANSACTION ON APPLIED SUPERCONDUCTIVITY, VOL. 24, NO. 3, JUNE 2014.