SPECTRAL STUDY OF VUV COHERENT LIGHT SOURCE BY LASER SEEDING AT UVSOR-II

Takanori Tanikawa^{1,A, B)}, Masahiro Adachi^{B)}, Heishun Zen^{B)}, Masahito Hosaka^{C)}, Naoto Yamamoto^{C)},

Yoshitaka Taira^{B, C)}, Jun-ichiro Yamazaki^{B)}, Masahiro Katoh^{B)}

^{A)} JSPS Reserch Fellow DC, The Graduate University for Advanced Studies [SOKENDAI]

38, Nishigo-naka, Myodaiji-cho, Okazaki, Aichi, 444-8585

^{B)} UVSOR facility, Institute for Molecular Sciences, 38, Nishigo-naka, Myodaiji-cho, Okazaki, Aichi, 444-8585

^{C)} Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603

Abstract

At the UVSOR-II electron storage ring, light source developments based on the laser seeding technique are in progress. In the past results, generation of deep ultraviolet coherent harmonics of variable polarization by using a femto-second laser has been achieved. A VUV (Vacuum UltraViolet) spectrometer has been constructed and is under testing. The CHG (Coherent Harmonic Generation) spectra in the VUV region was successfully observed, which was extending up to 8th harmonics.

As a near future plan, a new undulator system for CHG will be constructed. The undulator system will consist of a modulator, a buncher and a radiator. Parameter designs of them are in progress.

UVSOR-IIにおけるレーザーシーディングを用いた真空紫外 コヒーレント光源開発とスペクトルスタディ

1. はじめに

近年、世界的各地の放射光施設においてコヒーレ ント光発生の研究が活発になってきている。中でも 短波長領域の研究開発が顕著であり、加速器群のみ で実現できる光共振器型の自由電子レーザー(以下、 FEL: Free Electron Laser)や、シングルパスでレー ザー発振を可能とする SASE (Self-Amplified Spontaneous Emission)型FELが挙げられる。さらに最 近話題となっているTHz領域のコヒーレントシンク ロトロン放射(CSR: Coherent Synchrotron Radiation)は 長波長領域におけるコヒーレント光発生の一つであ る。また、外部からコヒーレントなレーザー光を電 子ビームに注入(レーザーシーディング)することで SASEの時間コヒーレンスを改善したシングルパ ス・シード型FELやコヒーレント高調波発生(以下、 CHG: Coherent Harmonic Generation)も挙げられる。

UVSOR-IIでは、共振器型自由電子レーザー研究 に長年取り組んできたが、近年では、フェムト秒 レーザーを用いることでテラヘルツ領域でのCSRと 深紫外領域でのCHGの研究を進めている^{[1][2]}。本研 究は、CHGの更なる短波長化を実現する為に、 UVSOR-II電子蓄積リングにおけるレーザーシー ディングを用いた真空紫外(以下、VUV: Vacuum UltraViolet)領域のコヒーレント光発生を目的として いる。本研究の特徴として、シード光源となるガス 高次高調波(以下、HHG: Higher Harmonics in Gas)を 世界で初めて電子蓄積リングに適用することにある。 HHGは軟X線領域までの強度が均一な高次高調波を

発生することができる。HHGを適用したレーザー シーディングは線形加速器であるSASE型FELにお いて既に実現されている^[3]。しかしこれには問題点 があり、シード光以外の波長、特にHHGのポンプ光 である大強度チタンサファイアレーザーの基本波が 増幅されたシード光と同軸に輸送されてしまう。こ れは光を利用するユーザーにとって大きな問題とな る。またHHGを利用しているユーザーはこの問題を 解消する為に多層膜ミラーを用いて単一波長を取り 出して利用しているが、VUV領域では波長選択に有 効なミラーが存在しない為、利用があまり促進され ていない。そこで以下で述べる新規に開発するアン ジュレータを適用することで、高次まで発生してい る高調波の中から単一の波長を選択的に取り出すこ とが可能になり、またこの方式を用いれば円偏光の VUVコヒーレント光を発生させることができるので、 新しい応用開発が盛んになると見込んでいる。

UVSOR-IIは昨年度より5ヶ年の光源改造計画が始 まっている。蓄積リングのビーム入射点を変更する ことで長直線部を創出し、そこにコヒーレント光発 生専用アンジュレータ及びビームラインを建設する。 現在はレーザーシステムの増強を進めており、また 先日、FEL光やCHG光を診断する為のVUV分光シス テムが完成した。他にも新規アンジュレータのパラ メータデザインを行うと共に、シード光源となる HHG発生システムの開発にも着手した。

¹ E-mail: tanikawa@ims.ac.jp

2. コヒーレント高調波発生光源と測定系

2.1 コヒーレント光発生用アンジュレータの設計

新しく製作するコヒーレント光発生専用アンジュ レータは図1に示すように、モジュレータ部、バン チャー部、ラディエータ部からなる3つの独立した システムで構成されている。モジュレータ部は電子 ビームにシード光を注入することにより電子ビーム にエネルギー変調を発生させ、バンチャー部はその エネルギー変調を空間密度変調に変換し、ラディ エータ部ではシード光の波長間隔で空間的にコヒー レントに整列した電子マイクロバンチからコヒーレ ント光を発生させる。既設の光クライストロンは上 記3つの構成が一体となって駆動する為、CHGには 不向きであるが、新規アンジュレータはこれらを独 立して駆動することができる為、CHGに最適な磁石 パラメータを設計できる。また、このアンジュレー タの特徴として、モジュレータ部とラディエータ部 を直線上に設置しないことが挙げられる。これは シード光と発生したCHG光を同軸に輸送させないと いう目的がある。これにより様々な波長成分を含む HHGから単一の波長だけを取り出すことが可能とな る。また、アンジュレータはAPPLE-II型を採用する ことで偏光可変のコヒーレント光発生が可能となっ ていると同時に、このアンジュレータは筺体可動式 とし、共振器型FEL実験を行う際には直線状に並べ ることも可能とする予定である。現在、モジュレー タ部の磁石パラメータ設計が完了した。パラメータ 設計には3D磁場計算コードRADIAを用いた。計算 の結果、磁石周期長は84 mm、周期数12で全長約1 mに決定した。

図1:コヒーレント光発生用アンジュレータ配置案。

2.2 VUV分光器と前置光学系

UVSOR-IIにおけるこれまでの実験は既存のFEL用 光共振器を流用して行われてきた。光共振器下流側 石英窓から大気中に光を取り出して可視領域分光器 (浜松ホトニクス社製C5094)を用いて深紫外領域ま でのCHG光やFEL光のスペクトル測定等の光診断を 行ってきた。しかし、より短波長の光は窓材によっ て透過率が制限される為、測定することができな かった。よって、VUV領域のCHGの研究を行うた めに新たに真空紫外領域の分光システムを建設する こととなった。

図2にVUV分光システムの構成を示す。今回導入 したVUV分光器(真空光学社製VMK-200-UHV)の仕 様として、測定可能波長領域は凹面型レプリカ回折 格子(2400本/mm、Ptコート)で決まる直入射領域50 ~300 nmで、入出射角64度の瀬谷波岡型、バッフル 内蔵、超高真空対応となっている。検出器には電子 増倍管(浜松ホトニクス社製R5150MOD)を使用して おり、測定可能波長は200 nm以下、第1ダイノード は酸化ベリリウム、最大ゲインは10の9乗となって いる。

前置光学系は2段ホルダーが付随した直進導入器 とVUV分光器入射用ステアリングミラーから成る。 2段ホルダーの上段には図4に示す光診断系に光を輸 送する為の45度反射平面アルミミラーを取り付てお り、下段にはバンドパスフィルターや金属薄膜フィ ルターなど様々な光学部品を取り付けられるように なっている。ステアリングミラーは、今後SiCミ ラーに交換する予定である。

図2:真空紫外分光器及び前置光学系周辺の配置図。

CHG予備実験

3.1 装置配置

実験装置配置を図4に示す。フェムト秒チタンサ ファイアレーザーパルス(COHERENT社製外部RF同 期モードロック発振器Mira及び再生増幅器Legend) はFEL用光共振器上流側よりARコート付きサファイ ア窓を介して入射される。窓の上流側にはBK7の集 光レンズ(f=5000 mm)が設置されており、光クライ ストロン前段の内部で集光されるようになっている。 シード光と相互作用して発生したCHGはFEL用光共 振器下流側に設置された光診断系及びVUV分光シス テムに輸送される。

図4:CHG実験で用いた各種装置配置。

3.2 実験条件

本実験における電子ビーム、光クライストロン及 びチタンサファイアレーザーのパラメータを表1に 示す。

600 MeV
\sim 30 mA
108 ps
27.4 nm-rad
4.2×10^-4
5.64 MHz
Single Bunch
110 mm
9 + 3 + 9
6.32
801 nm
2.05 mJ
442 fs
11 nm

表1:実験で用いた各種パラメータ。

3.3 実験方法

まず光診断部にて、電子ビームとシード光となる チタンサファイアレーザーの時空間アライメントを 行う。空間アライメントは図4のCCDカメラを用い て電子ビームとレーザー光が光クライストロン全体 に渡って一様に重なるよう、シード光のアライメン トを行う。続いて、高速ピンフォトダイオードを用 いて、電子ビームとシード光の粗い時間重ね合わせ を行う。その後、ストリークカメラ(浜松ホトニク ス社製C5680)を用いて精密に時間重ね合わせを行っ た。

時空間アライメント完了後、VUV分光システムを 用いて表1の条件で分光システム建設後初めてのス ペクトル測定を行った。

4. 実験結果と考察

VUV分光器で測定された自発光の高調波スペクト ルを図5に示す。測定で得られたデータは光学素子 の回折効率は反射率を考慮していない。結果として、 VUV分光システムの仕様通り50~200 nm(5~15次) までの光が観測できた。続いて、実験において測定 した自発光の高調波及びCHGスペクトルを図6に示 す。結果より、CHG光は8次高調波(波長100 nm)ま での観測に成功した。なお、スペクトル強度は各高 調波次数におけるピーク強度で規格化を行った。予 測された通り、CHG光のスペクトル幅は自発放射光 よりも狭くなっている。

5. 今後の予定

現在設計中のHHG発生システムを完成させ、 HHGをシード光としたCHGの研究に取り組む。また、コヒーレント光発生専用アンジュレータのパラ メータはモジュレータ部まで決定したので、これからCHGに適したバンチャー部とラディエータ部のパ ラメータの設計を行っていく。

6. 謝辞

本研究は、科学研究費補助金基盤研究Bおよび量子 ビーム基盤技術開発プログラムの支援を得て行われ た。

参考文献

[1] S.Bielawski, C.Evan, T.Hara, M.Hosaka, M.Katoh, S.Kimura, A.Mochihashi, M.Shimada, C.Szwaj, T.Takahashi and Y.Takashima, "Tunable narrowband terahertz emission from mastered laser-electron beam interaction", Nature Physics, VOL4, 390-393, 2008.

[2] M.Labat, M.Hosaka, A.Mochihashi, M.Shimada, M.Katoh, G.Lambert, T.Hara, Y.Takashima and M.E.Couprie, "Coherent harmonic generation on UVSOR-II storage ring", The European Physical Jounal D, VOL44, Number1, 187-200, 2007.

[3] G.Lambert, T.Hara, D.Garzella, T.Tanikawa, M.Labat, B.Carre, H.Kitamura, T.Shintake, M.Bougeard, S.Inoue, Y.Tanaka, P.Salieres, H.Merdji, O.Chubar, O.Gobert, K.Tahara and M.E.Couprie, "Injection of harmonics generated in gas in a Free-Electron-Laser providing intense and coherent extreme-UV light", Nature Physics, VOL4, 296-300, 2008.