TOLERANCE STUDY ON RF AMPLITUDE AND PHASE OF MAIN ACCELERATING CAVITIES AND INJECTION TIMING FOR THE COMPACT ERL

Norio Nakamura^{1,A)}, Tsukasa Miyajima^{B)}, Miho Shimada^{B)}, Yukinori Kobayashi^{B)}, Shogo Sakanaka^{B)}, Ryoichi Hajima^{C)} ^{A)} Institute for Solid State Physics(ISSP), University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0884 ^{B)} High Energy Accelerator Research Organization(KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 ^{C)} Japan Atomic Energy Agency(JAEA) 2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1195

Abstract

Tolerance study on RF amplitude and phase of main accelerating cavities and injection timing was performed for the compact ERL with a simulation code "elegant". As a result, it was found that errors of the RF amplitude and phase should be controlled within 0.01% and 0.01° in rms to satisfy requirements for the arrival time and the bunch length at the exit of the 1st arc section in bunch-compression mode. In high-current and low-emittance modes, these control errors can be relaxed to 0.1% and 0.1°. The injection timing error is allowed up to at least 200 fs, which does not deteriorate the beam quality at the exit of the 1st arc section in all the operation modes.

コンパクトERLのための主加速空洞RF振幅位相と入射タイミング の許容誤差の研究

1. はじめに

ERL放射光源の実証実験に向けて、コンパクトERL の設計と要素開発が進められている[1]。図1と表1 にコンパクトERLの配置構成と今回使用した3つの 運転モードにおける基本パラメータを示す。これま で各構成要素の持つパラメータの最適化について精 力的に検討されてきたが、それらの持つ誤差(変 動)の影響ついては十分に研究されたとは言えない。 例えば、バンチ長が既存光源に比べて短いERLでは、 様々なタイミング精度への要求は必然的に高くなる ものと予想される。特にバンチ圧縮モードでは、主 加速空洞と第1アーク部を利用して極短バンチを生 成するので、主加速空洞のRF振幅と位相の安定性に は厳しい条件が課せられるであろう。ここでは、入 射部のタイミング誤差と主加速空洞のRF振幅位相誤 差がコンパクトERLに及ぼす影響とそれらの許容誤 差について報告する。

表1: コンパクト ERL の基本パラメータ (HC:大 電流モード、LE: 低エミッタンスモード、BC: バン チ圧縮モード)

パラメータ	НС	LE	BC
RF 周波数 [GHz]	1.3		
入射エネルギー[MeV]	5		
ビームエネルギー[MeV]	125 ¹⁾		
繰り返し周波数 [GHz]	1.3	1.3	≤ 0.001
ビーム電流[mA]	100	10	-
バンチ電荷[pC]	77	7.7	≥ 77
エミッタンス ²⁾ [mm·mrad]	1	0.1	-
バンチ長[ps]	2	2	< 0.1

¹⁾主空洞の加速勾配15MV/mを仮定。加速位相の効果は含 めていない。²⁾規格化エミッタンス

2. バンチ圧縮モード

2.1 ビームパラメータとオプティクス

今回、入射ビームのエネルギーは5MeVとし、初期の電子分布(合流部直後)は6次元のガウス分布 とし、電荷77pC、水平・垂直規格化エミッタンス 1mm·mrad、バンチ長1ps、運動量幅2×10⁻³を仮定した。 主加速空洞の加速電圧は超伝導(SC)モデュール(各

¹ E-mail: nakamura@issp.u-tokyo.ac.jp

モデュールは4台の9セル空洞を持つ)当り60MV とし、2台のSCモデュールで120MVになる。SCモ デュールの加速空洞の加速位相を ϕ_{RF} とすると、空洞 通過後のビームエネルギーEは、電子と加速電場の 速度差を無視すれば、 $E[MV]=5+120\times \cos\phi_{RF}$ となる。

バンチ圧縮モードでは、主加速空洞の加速勾配と 第1アーク部の R_{56} を利用することでバンチ圧縮を行 う。オプティクスは、第1アーク部の R_{56} の値を 0.131mに、第2アーク部ではバンチ長を復元するた めに R_{56} を-0.131mとなるように設計されている。ま た、与えられた R_{56} の値に対してバンチ長が第1アー ク部出口で最小になるように、SCモデュールの加速 位相と六極電磁石の磁場強度が最適化されている^[2]。 この時、第1及び第2SCモデュール内の加速空洞の 加速位相 ϕ_{RF} はそれぞれ14.433°、15°である。電子が 基準運動量pから Δp だけずれると、電子の通過時間 は軌道長が延びるために運動量のずれに依存して式 (1)にように Δt だけ変化する。

$$\Delta t \simeq \frac{R_{56}}{v} \frac{\Delta p}{p} \tag{1}$$

ここで、vは電子の速度である。

2.2 RF振幅誤差による影響

基準となる主加速空洞のRF電圧振幅からずれた場 合、第1アーク部出口でのバンチの到着時間とバン チ長がどのように変わるかを軌道解析コード elegant^[3]によるシミュレーションによって求めた。 2つのSCモデュールで加速空洞は同じ振幅誤差を持 つものとした。図3に振幅誤差が-0.5%から+0.5%ま で変化した時の計算結果を示す。振幅誤差による到 着時間の変化はほぼ直線的で、0.1%の振幅誤差に対 して約410fsになる。これは、 $R_{56}=0.131$ [m]と $\Delta p/p$ *≈ΔV/V=0.001を*使って式(1)から求めた値と矛盾しな い。バンチ長(rms)については、基準振幅を中心(最 小)に2次関数的になる。到着時間の変動をバンチ 長と同程度以下にするためには、振幅誤差をrms値 で0.01%以下に抑える必要がある。一方、直接的な バンチ長への影響は相対的に小さく、0.1%以下であ れば許容できる。図4に、各振幅誤差(-0.5%から +0.5%まで0.1%ずつ11点)に対する第1アーク出口 でのバンチの時間と運動量の2次元分布を示す。到 着時間と分布形状の変化の様子が観察できる。

2.3 RF位相誤差による影響

振幅誤差と同様に、主加速空洞の加速位相誤差に よる第1アーク部出口でのバンチの到着時間とバン チ長の変化を求めた。この場合も、2つのSCモ デュールで同じ位相誤差を持つものとした。図5に 振幅誤差が-0.5°から+0.5°まで変化した時の解析結果 を示す。振幅誤差と同様に、位相誤差に対する到着 時間の変化は直線的で、0.1°に対して約200fsとなる。 これも、 $R_{56}=0.131m \ge \Delta p/p \approx \Delta \phi_{RF} \times tan \phi_{RF}=0.00047 を 使$ えば、式(1)と矛盾しない結果であることがわかる。 バンチ長についても、振幅誤差と同様に基準位相を 中心に2次関数的になる。到着時間の変動をバンチ 長と同程度以下にするためには、振幅誤差を0.01° 程度まで抑える必要がある。直接的なバンチ長への 影響は0.1°以下であれば無視できるであろう。図6 に、各振幅誤差(-0.5°から+0.5°まで0.1°ずつ11点) での第1アーク部出口でのバンチの時間と運動量の 2次元分布を示す。

図3: RF振幅誤差による第1アーク部出口での到着 時間とバンチ長の変化

図5: RF位相誤差による第1アーク部出口での到着 時間とバンチ長の変化

図6:RF位相誤差による2次元バンチ形状の変化

2.4 入射タイミング誤差による影響

入射タイミング誤差の影響は、位相誤差の結果を 利用して求めることができる。到着時間の変化ATは、 入射タイミング誤差ΔtiniとそれによるRF位相の変化 $\Delta \phi_{RF} = 2\pi f \Delta t_{ini}$ が引き起こす時間変化の和になる。ここ で、flt空洞の加速周波数である。一方、バンチ長の 変化はRF位相の変化による変化に等しい。図7に入 射タイミング誤差による到着時間とバンチ長の変化 を示す。到着時間の変化は200fsの入射タイミング誤 差に対して10fs以下しかないことがわかる。これは、 位相変化による第1アーク部での通過時間の変化が 入射タイミング誤差を相殺するためである。バンチ 長は、200fsでの誤差に対して5fs以下の変化である。 入射タイミングとしては、rms値で200fs程度までの 誤差は十分に許容できるであろう。現在、入射加速 空洞のRF振幅位相誤差による入射タイミングの変化 やビームへの影響についてシミュレーションが進行 中である[4]

図7:入射タイミング誤差による第1アーク部出口 での到着時間とバンチ長の変化

3. 大電流モードと低エミッタンスモード

3.1 ビームパラメータとオプティクス

仮定された初期の電子分布(合流部直後)は、大 電流モードでは、電荷77pC、水平・垂直規格化エ ミッタンス1mm·mrad、バンチ長2ps、運動量幅2×10³ である。低エミッタンスモードでは、電荷7.7pC、 水平・垂直規格化エミッタンス0.1mm·mrad、バンチ 長と運動量幅は大電流モードと同じである。オプ ティクスは2つのアーク部ともにR₅₆=0mとなるよう に設計されている。また、主加速空洞直後のバンチ の運動量が最大になるように、2つのSCモデュール の加速位相は-1.1°に設定されている。六極電磁石は 励磁されていない。

3.2 各種誤差の影響

RF振幅位相誤差及び入射タイミング誤差の影響を バンチ圧縮モードと同様に評価した。ただし、到着 時間とバンチ長の変化だけでなく、規格化エミッタ ンス、運動量と運動量幅についてもその変化を基準 値との比率で求めた。RFの振幅誤差±0.1%と位相誤 差±0.1°に対して、到着時間の変化はそれぞれ最大 25fs、0.2fsであった。バンチ長の変化は同じ誤差に 対してどちらも基準値の0.1%以下と小さい。その他 のパラメータでは、位相誤差による運動量幅の変化 が最も大きく、大電流モードで最大7.1%、低エミッ タンスモードで最大2.0%であった。それ以外のパラ メータの変化はすべて1%以下に収まった。入射タイ ミング誤差については、±200fsが位相変化約±0.1°に 対応するので、200fsのタイミング誤差の影響は到着 時間への影響を除くと位相誤差0.1°の影響とほぼ同 じになる。到着時間への影響はほぼ入射タイミング 誤差そのものに等しいので、バンチ圧縮モードに比 べてより大きな変化になるが、バンチ長が2psと長 いので相対的な影響は小さい。

4. まとめ

バンチ圧縮モードでは、第1アーク部出口での到 着時間やバンチ長が主加速空洞のRF振幅位相誤差に 敏感になる。到着時間の変動をバンチ長に比べて小 さく抑えるためには、主加速空洞のRF振幅位相誤差 をms値でそれぞれ0.01%、0.01°以下に抑えることが 要求される。バンチ長からの要件はそれに比べると 1桁程度緩い。入射タイミング誤差については、少 なくても200fs以下であれば問題にならない。大電流 モードと低エミッタンスモードについては、RF振幅 及び位相誤差を0.1%、0.1°以下、入射タイミング誤 差を200fs以下に抑えれば十分である。現在、コンパ クトERLでは2ループ案が設計検討されているが^[5]、 2ループでもバンチ圧縮の方法等は変わらないので、 その影響についても1ループと本質的に同じ議論が できるであろう。

参考文献

- [1] Y. Kobayashi et al., in these proceedings.
- [2] T. Shiraga et al., PAC09, Vancouver, 2009.
- [3] M. Borland, Phys. Rev. ST-AB 4, 070701 (2001).
- [4] T. Miyajima et al., ERL09, Ithaca, 2009.
- [5] M. Shimada, in these proceedings, 2009.