DEVELOPMENTS OF COMPONENTS FOR FEMTO-SECOND REAL-TIME BUNCH SHAPE MONITOR

Akira Maekawa^{A)}, Mitsuru Uesaka^{A)}, Hiromitsu Tomizawa^{B)}, Shinichi Matsubara^{C)}

^{A)} Nuclear Professional School, University of Tokyo

2-22 Shirakata-Shirane, Naka, Ibaraki, 319-1188

^{B)} JASRI

1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198

C) RIKEN

1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148

Abstract

For the stable SASE operation in XFEL/SPring-8, we have developed the optical components especially for threedimensional femto-second bunch shape monitor based on Electro-Optic detection as non-destructive real-time singleshot measurements. This bunch shape monitor requires a supercontinuum laser pulse (> 400 nm bandwidth), the optical components for such a laser pulse, and an organic EO material. We report the details of developing status of these components for this bunch shape monitor.

フェムト秒リアルタイム電子バンチ形状モニタ用の要素技術開発

1. はじめに

現在SPring-8敷地内において、X線自由電子レー ザー(XFEL)が建設中である^[1]。X線レーザー発 振のためには低エミッタンス(~1 π mm-mrad)・極短 バンチ(半値全幅で~30 fs)の電子バンチが必要とさ れており、安定なX線レーザー発振のためにはバン チ長を運転中に計測して最適化することが望まれる。 そのために我々は現在、電気光学(EO: Electro-Optic) 効果を用いたフェムト秒電子バンチの3次元形状計 測体系の設計開発を行っている(詳細は文献^[2-4]を参 照)。EO効果によるバンチ形状計測の特長は、非破 壊計測であることとシングルショット計測が可能で ある^[5]ことであるので、XFELにおいてビーム調整 中に使用できるモニタとして有用である。これまで にEO効果を用いたバンチ形状計測では120 fs (FWHM)程度の時間分解能が報告されており^[6]、 我々は白色レーザー(波長帯域: 600 - 1100 nm)や 有機EO結晶を用いることで時間分解能の更なる向 上を行う。同時に、横方向の電荷分布計測のために、 プローブレーザーをその波長帯域を保持したままで ラジアル偏光化する[7]。

この計測体系では、上述のように白色レーザーを ラジアル偏光状態を保持して伝送する必要があるた め、広帯域(600 – 1100 nm)に渡って使用可能な光学 素子(ミラー、波長板、ビームスプリッタなど)が 不可欠となる。このため、これまでに広帯域で使用 可能な波長板やビームスプリッタの新規開発を行っ てきた。ここでは、EO効果を用いた3次元バンチ 形状計測に必要となる光学素子及び有機EO結晶の 特性評価を行った結果を報告する。

2. 3次元バンチ形状計測の構成要素

2.1 計測体系の概要

フェムト秒電子バンチの3次元形状計測体系(文 献[4]の図1を参照)の特長は、①高時間分解能化の ために白色・線形チャープ矩形レーザーパルス(バ ンド幅 400 nm)および有機EO結晶を用いること、 ②3次元バンチ形状計測(縦方向・横方向電荷分布 の同時計測)を行うために、円環・ラジアル偏光・ 矩形レーザーによって電子ビーム軸周囲に複数配置 したEO結晶を同時にプローブすること、の2点で ある。3次元バンチ形状計測では、上記のような白 色・ラジアル偏光・線形チャープ・矩形スペクトル のレーザーパルスに対応した光学系が必要とされる。 以下に各光学素子の特性評価の結果を報告する。

2.2 EO結晶の透過率測定

EO効果を用いたバンチ形状計測において一般的 に使用されているZnTeやGaPなどの無機EO結晶は、 それぞれ6 THz、11 THz付近にフォノン吸収が存在 する。このため、100 fs以下の極短電子バンチの場 合、クーロン電場が結晶中を伝播する際に電場波形 が大きく崩れることになる。100 fs (FWHM)のパル ス幅を持つクーロン電場が結晶に入射した場合の、 結晶伝播中における電場波形の計算結果を図1に示 す。1 mm厚のZnTe及びGaPを伝播した場合、クーロ ン電場の形状は崩れ、パルス幅は半値全幅でそれぞ れ370 fsと210 fsにまで伸張する。30 fs (FWHM)の電 子バンチを計測する場合には、0 - 30 THzの広帯域 で吸収のないEO結晶が必要である。その候補とし て我々は、有機EO結晶であるDAST結晶の使用を検 討している。日本が世界に先駆けて開発したDAST 結晶は20 THz以上の広帯域THz生成源としての報告 例があり^[8]、極短バンチ形状計測への応用が期待さ れる。そこで、可視領域ではフォトニック結晶ファ イバレーザーである白色レーザー光源(SC450. Fianium)を、THz領域では遠赤外分光器を用いて、 DAST結晶(0.1 mm厚)の可視・THz領域での透過率測 定を行った。白色光源の波長範囲は450-2400 nmで あるが、今回使用した分光器のCCDカメラ (PIXIS100, Princeton Instruments)の感度特性から、本 計測での長波長側の上限は1000 nm程度となる。透 過率測定の結果を図2に示す。600 nm以上の可視領 域では透過率60%以上でフラットな透過特性を持っ ていることが分かる。THz領域では今回の計測では 0 - 10 THzの低周波数領域では計測する結晶のサイ ズが小さいために有意な透過率測定を行うことが出 来なかったが、15 - 25 THzの周波数領域では透過率 が20%程度であることが分かった。今後はDAST結 晶に関して0 - 10 THz領域での透過率測定も再度行 うと共に、他のEO結晶についても同様の測定を行 い、極短電子バンチの計測に使用可能な結晶の選定 を行う予定である。

図1 EO結晶伝播中のクーロン電場波形。dは 結晶中での伝搬距離を示す。

図 2 0.1 mm厚DAST結晶の可視領域(左)と THz領域(右)での透過率測定結果。

2.3 DAZZLERによる白色光の矩形スペクトル化 EO効果を用いたバンチ形状計測(Spectral decoding) での時間分解能は、レーザーのフーリエ限界パルス 幅 τ_0 とチャープパルス幅 τ_c を<u>用い</u>て

 $T_{laser} \approx \sqrt{\tau_0 \tau_c}$

で表わされる。従って、30 fs (FWHM)の極短電子バ ンチの計測のためには、400 nm以上のバンド幅を持 つ白色レーザーが必要となる。更に、3次元バンチ 形状計測では電子ビーム軸周囲に配置した複数の EO結晶で得られたEO信号間の強度比によって横方 向電荷分布の検出を行う。このため、3次元形状計 測をリアルタイムで行うためには白色光が線形 チャープかつ矩形スペクトルである必要がある。

そこで、600 - 1100 nmの広帯域で使用可能なAO 変調器(DAZZLER, UWB-650-1100, FASTLITE)を 用いて白色光の矩形スペクトル化を行った。結果を 図3に示す。光源は、前節で用いたものと同じ白色 レーザーを使用した。分光器はシングルショット計 測が可能なファイバ分光器(HR4000, Ocean Optics)を 使用した。半値全幅で100 nm程度であったスペクト ルを、DAZZLERによって300 nm以上のバンド幅を 持つ矩形スペクトルへと整形することが出来た。今 後はFROGおよび分光ストリークカメラを用いて線 形チャープの精密計測を行う。

図 3 DAZZLERによる矩形スペクトル化。(a) 整形前スペクトル、(b)整形後スペクトル [× 20]、(c)分光器の感度曲線。

2.4 ミラーの反射率測定

白色光を伝送するためのミラーとしては、350 – 1100 nmの波長域で使用可能な広帯域ミラー(BBDS-PM-1037-C, CVI)と金属ミラーを使用する。特に、 真空チャンバ中で用いるミラーとしては、チャージ アップの影響を避けるために非磁性SUS (SUS316L) 基板上に金属コーティングした全金属ミラーを用い る。全金属ミラーの面粗さ・面精度はZygoで計測を 行い、ミラー中心(ϕ 20 nm)での面粗さはアルミミ ラーの場合Ra = 9.88 nm、金ミラーの場合Ra = 7.63 nm、面精度はアルミミラーの場合73.82 nm (PV)、 金ミラーの場合55.22 nm (PV)と計測された。

前節までに使用したものと同様の白色レーザー光 源を用いて、広帯域ミラーおよび金属ミラーの反射

図4 金属ミラー等の反射率。(左)計算値、 (右)測定値。

率を測定した。測定結果及び計算値を図4に示す。 本章の測定では光を積分球(FOIS-1, Ocean Optics)に 入射し、ファイバを用いて分光器へと導いてスペク トルを計測している。しかし反射率測定では、透過 率測定とは異なり、計測対象の有無によって光軸が 変化し、それに伴って積分球の位置も変える必要が あるため、反射率の絶対値に多少誤差が生じること になる。したがって、広帯域ミラー及び銀ミラーい ついては100 %を超える反射率となってしまってい るが、波長依存性は概ね計算値と一致している。全 金属ミラーについても、通常のガラス基板の金属蒸 着ミラーの反射率と同等の波長依存性を持つことを 確認した。

2.5 光学素子の透過率測定

EO計測では通常、波長板や偏光子によってレー ザー偏光状態の調整を行う。3次元バンチ形状計測 では、フェムト秒の時間分解能達成のために白色 レーザーを用いる。このため、広帯域(600 - 1100 nm)で使用可能な波長板及び偏光子として、フレネ ルロム型波長板及び広帯域偏光ビームスプリッタ

(分離角106度、消光比1000:1)を新規開発した。 フレネルロム素子の断面図を図5に示す。これは全 反射時にP偏光とS偏光との間に波長に関係なく λ /8 の位相差が生じることを利用した光学素子である。 従って λ /2波長板の場合4回、 λ /4波長板の場合2回全 反射することで、所定の位相差を与える。また、 λ /2波長板では素子間の接合にオプティカルコンタ クトを用いているため、高強度レーザーパルスでも 使用可能である。バンチ形状計測で使用するこれら

optical contact

図 5 フレネルロム素子。(a) λ/4波長板、 (b) λ/2波長板。

図 6 光学素子の透過率測定結果。HWP: フレネ ルロム型λ/2波長板、QWP: フレネルロム型λ/4波 長板、PBS: 偏光ビームスプリッタ(Tp: P偏光透 過率、Ts: S偏光透過率)

光学素子の透過特性を前節までと同様に計測した。 結果を図6に示す。600 nm以上の波長帯域でフラッ トな透過特性を持っていることを確認することが出 来た。

2.6 円錐屈折によるフレネルロム素子の特性評価

フレネルロム素子の回転によって偏光状態が設計 通りに変化しているか確認するために、円錐屈折を 利用してフレネルロム波長板出射後の偏光状態を計 測した。円錐屈折とは、2軸性の複屈折結晶の光軸 (2つの光軸の内、任意の軸)に沿って円偏光(ま たは非偏光)を入射した際に、光が結晶内で円錐状 に広がるように屈折し、結晶出射後に円環状のプロ ファイルが生成される現象である。これは1軸性の 複屈折結晶への入射光が常光線と異常光線とに分離 するのと同様に、光の偏光方向によって結晶中での 伝搬方向が変化するために起こる。

本節の計測では、2軸性結晶としてKGd(WO₄)₂を 使用した。KGd(WO₄)₂は350 – 5500 nmの広帯域で透 明であるため、白色レーザーパルスの偏光状態の計 測方法としての利用を考案した。この場合、 KGd(WO₄)₂の光軸に沿ってレーザーを集光させつつ 結晶に入射すると、入射光が非偏光もしくは円偏光 の場合は円環状の、直線偏光の場合は三日月状のプ ロファイルが集光点において生成される^[9]ため、偏 光状態の判別が可能である。

図7 円錐屈折によるフレネルロム型λ/2波長板 (HWP)の特性評価。図中の角度はHWPの回転角 を、矢印はHWPへの入射偏光状態を示す。

図8 円錐屈折によるフレネルロム型λ/4波長板 (QWP)の特性評価。図中の角度はHWPの回転角 を、矢印はQWPへの入射偏光状態を示す。

図7に、λ/2波長板の特性評価の結果を示す。レー ザー光源には、前節までに用いた白色光源を用いた。 図7は使用した白色光を、波長範囲を限定せずに トータルで計測した結果である。今回用いたCCDカ メラ (Model4800, Cohu) は400 - 1000 nmの波長帯 域で使用可能である(感度のピークは720 nm)。バ ンドパスフィルタによって600 - 800 nmの波長範囲 を50 nmのバンド幅毎に限定した計測も行っており、 図7と同様の結果が得られている。波長板の回転角 が0度のときに垂直偏光のレーザーが2軸性結晶に 入射される。波長板を-45度から+45度へと回転させ ると、結晶への入射偏光軸は水平偏光から垂直偏光 へと半時計回りに回転していき、+45度のとき再び 水平偏光となる。このとき、三日月状の出射プロ ファイルも偏光軸の回転と同様に半時計回りに回転 し、+45度のときに丁度一回転する様子が確認でき る。同様に、λ/4波長板の特性評価の結果を図8に 示す。図5に示したように、λ/4波長板は入射光と 出射光の光軸がずれるため、λ/4波長板を回転させ て偏光状態を調整することは実際の実験では困難で ある。ここではλ/4波長板の前にλ/2波長板を置き、 λ/4波長板への入射偏光軸を調整することで円偏光 レーザーを生成した。円偏光レーザー(λ/2波長板 の回転角が0度の場合)を結晶に入射した場合、図 8の左図のように円環状プロファイルが確認された。 λ/2波長板を回転させると入射レーザーは楕円偏光 となり、結晶からの出射プロファイルは三日月状へ と近づく。λ/2波長板の角度を±22.5度にすると結晶 への入射偏光状態は直線偏光となり、図7と同様の 三日月状プロファイルが確認できる。以上より、フ レネルロム素子によって設計通りに偏光状態が変化 していることを、円錐屈折を利用することで確認す ることが出来た。

3. まとめと今後の予定

電気光学効果を用いたフェムト秒電子バンチの3 次元形状計測体系の設計開発を行っている。計測体 系に必要となるEO結晶や光学素子の透過率測定、 ミラーの反射率測定、DAZZLERによる白色光の矩 形スペクトル化、円錐屈折を利用したフレネルロム 素子の広帯域での特性評価を行い、それぞれ600 – 1000 nmの波長帯域において設計性能を確保してい ることを確認した。

今後はEO結晶の透過率測定を進めると共に、 レーザー励起THz源を用いてEO検出を行い、EO結 晶の電気光学効果の特性評価を行うことで、極短バ ンチ形状計測に使用可能な結晶の選定を進める。ま た、FROGや分光ストリークカメラによる計測を行 うことで、DAZZLERによる白色光の線形チャー プ・矩形化を行う。最終的に、これら要素技術を組 み合わせることで3次元バンチ形状計測実験を行う 予定である。

参考文献

- [1] T. Shintake, Proc. of EPAC 08, Genova, Italy (2008) 136
- [2] H. Tomizawa et al., Proc. of FEL 07, Novosibirsk, Russia (2007) 472
- [3] A. Maekawa et al., Phys. Rev. ST-AB, submitted
- [4] A. Maekawa et al., Proc. of 6th PASJ, Tokai (2009) TOBDB03
- [5] I. Wilke et al., Phys. Rev. Lett. 88 (2002) 124801
- [6] G. Berden, et al., Phys. Rev. Lett., 99 (2007) 164801
- [7] A. Maekawa et al., Proc. of FEL08, Gyeongju, Korea (2008) 435
- [8] Y. Takahashi et al., J. Photochem. Photobiol. A: Chem. 183 (2006) 247
- [9] T. K. Kalkandjiev et al., SPIE 6994 (2008) 69940B