Two dimensional numerical calculations on ionized gases in a proportional counter

K. Katagiri^{*}, T. Furukawa, E. Takeshita, and K. Noda National Institute of Radiological Sciences 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555

Abstract

For the beam profile diagnosis of heavy ion cancer therapy in HIMAC (Heavy Ion Medical Accelerator in Chiba), a MWPC (Multi-Wire Proportional Counter) detector have been employed as a beam profile monitor. Due to the high rate beams ($\sim 10^8$ pps), a gain reduction of output signals have been observed in the scanning beam experiments at HIMAC. In order to reduce the gain reduction by optimizing the parameters of MWPCs, we developed a numerical code by employing two-dimensional fluid model. As a test case for the design of the MWPC, we analysed a simple proportional counter. From the analysis results, we discussed whether the numerical code can be applied to the design of the MWPC or not.

2次元流体モデルによる比例計数管内電離ガスの数値解析

1. はじめに

放射線医学総合研究所では、スキャニング照射シ ステムにおける線量分布測定のために、線量モニタ とビームプロファイルモニタを組み合わせた線量分 布高速評価システムの開発が行われてきた^[1].高速 評価を実現するために、 プロファイルモニタからは高 いサンプリングレートでのデータ収集が必要となる. そのため、後段に続く増幅回路系の周波数特性や負荷 を考慮すると,可能な限り高いゲインを得られるモニ タが好ましい. このような経緯から, プロファイルモ ニタとして MWPC(Multi-Wire Proportional Counter) の利用を検討している. MWPCは、高いゲインを有 する一方で、入射粒子数(レート)を過度に増加させ ると, 出力信号の低下が生じる. この出力信号の低 下 (ゲインリダクション)は,陽イオンによる空間電 荷効果が原因である. 陽極近傍の増幅領域では, 電 子は電子なだれにより増幅され陽極に収集されるが, ドリフト速度が電子に比べて遅いイオンは増幅領域 に留まり、電場を歪ませる.この電場の変化により、 電離レートや電子のドリフト速度が低下し、ゲイン リダクションが生じる.

我々は, MWPC のゲインリダクションの低減を目 指して, 数値解析によるパラメータ (陽極径, 電極間 距離, 封入ガスの圧力, 種類)の最適化設計を行って いる.この解析では,空間スケールが 1–10mm, 1 気圧程度 (~ 10¹⁹ cm⁻³)のガス領域を,長い時間ス ケール (~ イオンの電極間移動時間)で計算する必要 があるため,計算量を考慮すると粒子計算法(モンテ カルロ法等)の適用は好ましくない.そのため,流体 モデルを用いた解析コードの開発を行った.

まず,テストケースとして,シンプルな円柱型の 比例計数管を計算の対象とし,短い時間スケール(~ 電子の電極間移動時間)での解析を行った.ガス増幅 率の印加電圧依存性(ゲインカーブ)を理論式と比較 し,MWPCの最適化の際に必要となるガス増幅率の 定量評価が可能かどうかを検討した.また,高レー トでの使用を模擬した計算を行い,空間電荷効果と ゲインリダクションの関係を評価した.以上の結果 から,開発したコードの最適化設計への適用性を議 論した.

2. 解析法

2.1 物理モデル

チェンバ内部のガスは温度 T = 300 K, 圧力 P = 1 atm とし,連続体近似の成立を仮定^[2]して, 流体モデルを用いる.電離過程は第一電離のみを考 慮し,また簡単化のため光電効果は無視する.電子, イオン密度分布の時間変化は,連続の式

$$\frac{\partial n_{\rm s}}{\partial t} + \nabla \cdot (n_{\rm s} \vec{u_{\rm s}}) = D_{\rm s} \nabla^2 n_{\rm s} + G_{\rm s} - L_{\rm s}, \quad (1)$$

により記述される.ここで,添字 s は粒子種を示し (e:電子, i:イオン), $\vec{u_s}$ はドリフト速度である. D_s は 拡散係数であり,移動度 μ_s ,及び電子の平均エネル ギー ϵ_e を用いて,

$$D_{\rm s} = \begin{cases} \mu_{\rm i} \frac{kT}{e}, & \text{(for ions)}, \\ \mu_{\rm e} \epsilon_{\rm e}, & \text{(for electrons)}, \end{cases}$$
(2)

である (アインシュタインの関係式). *G*_s, *L*s はそれ ぞれ生成項, 消滅項である:

$$G_{\rm s} = \alpha n_{\rm e} |\vec{u_{\rm e}}|, \qquad (3a)$$

$$L_{\rm s} = \alpha_{\rm cap} n_{\rm e} n_{\rm i}. \tag{3b}$$

ここで、 α は電離係数、 α_{cap} は再結合係数である.電場が十分に大きいければ、再結合係数は電離係数に比べて十分小さく、 $\alpha_{cap} \simeq 0$ と出来る.

式 (1) でのドリフト速度 $\vec{u_s}$ は、移動度 μ_s と電場 \vec{E} により

$$\vec{u_{\rm s}} = \mu_{\rm s} \cdot \vec{E},\tag{4}$$

^{*} E-mail: tag410@nirs.go.jp

と記述される.ドリフト速度,輸送係数 (μ_s),及び スウォームパラメータ (α , α_{cap} , ϵ_s)は電場の関数であ る.そのため,ポアソン方程式

$$\nabla^2 \phi = -\frac{e(n_{\rm i} - n_{\rm e})}{\varepsilon_0},\tag{5}$$

を式(1)と同時に解く必要がある.電場の導出には,

$$\vec{E} = -\nabla\phi,$$
 (6)

を用いる.

式(1)の輸送係数とスウォームパラメータは、デー タテーブル (SIGLO Data Base¹)を用いた.

2.2 計算法

解析に用いた計算法を表 1 に示す. 空間分割に は,等間隔スタガードグリッド (Arakawa-B型)を用 いた (200×200,図 1).計算は $CFL \leq 0.2$ (Courant-Friedrichs-Lewy 条件), $D\Delta t/\Delta x^2 \leq 0.2$ (拡散項の安 定性条件) で行った.

	移流項	CIP法 [3] (Constrained Interpolation Profile) 2次元化:M型
輸送方程式	非移流項	空間一階微分項: 片側差分 空間二階微分項(拡散項): 中心差分 時間積分: 2次精度ルンゲクッタ法
ポアソン方程式	SOR (Successive Over Relaxation)法 (加速緩和係数 ω= 1.8)	
データテーブル	3次スプライン補間法	

図 1: 比例計数管のモデル化: 簡易化のために, 陽極 ワイヤーを矩形形状で表現した. 封入ガスはヘリウ ムとした.

3. 解析結果

3.1 電子なだれの生成と時間変化

解析例として,電子密度の2次元分布を図2に示 す.イオン対の初期分布として,図2中の左図に示す とおり、列状に二箇所置いた.右図に示すT = 100 ns の分布が初期状態の列状分布から歪んでいるのは、陽 極までの距離が近い程電場が強く、ドリフト速度に 差が生じるためである.陽極の近傍では電子なだれ が発生し、電子密度が増加しているのが確認できる. 図3は、x軸上での電子分布の時間変化である.計 算は図1の model A で行い、印加電圧はV=800 V と した.矩形型の電子分布は、陽極方向への進行と共 に拡散しプロファイルは崩れる.陽極方向に $x \simeq 0.2$ まで進行すると、急激に電子増幅されているのが確 認出来る.

図 2: 電子なだれの発生の様子. V = 800 Vの場合 (電子の初期状態の縦棒: $1.5 \le x \le 1.7 \text{ mm}, -1.5 \le y \le 1.5 \text{ mm},$ 横棒: $-1.5 \le x \le 1.5 \text{ mm}, -1.7 \le y \le -1.5 \text{ mm}$).

図 3: x 軸上における電子密度分布の時間変化

3.2 ゲインカーブの理論式との比較

出力信号の評価は、陽極に流入する電子なだれの フラックス (= $n_e \cdot v_{e, ave}$)により評価した. $v_{e, ave}$ は、 スタガード格子上で密度を囲む四隅のドリフト速度 を平均した量である.このフラックスを時間積分す ることで収集電子数を見積り、ガス増幅率 $M(\equiv 収集$ 電子数/初期電子数)の導出を行った.なお、電子増幅 をゼロとして(式(1)で生成項G = 0として)、電子 収集の保存性を確認したところ、初期電子数との相 対誤差はおおよそ 2%程度であった.

計算コードにより導出したガス増幅率が適当であ るかを確かめるため,ゲインカーブについて理論式

¹"The Siglo Data base, CPAT and Kinema Software, http://www.siglo-kinema.com"

との比較を行った.円筒型比例計数管のガス増幅率Mの理論式は,電離係数 $\alpha(E(r))$ を用いて,

$$M = \exp\left(\int_{r_a}^{r_b} \alpha(E(r))dr\right),\tag{7}$$

である (r: 陽極からの距離). 電離係数については,数 値解と同様に,SIGLO Data Base を用いた.図4に 比較の結果を示す.計算は図1の model B の条件で 行い,この条件に合わせて理論式のパラメータは陽 極半径 r_a =45 μ m,陰極半径 r_b =1 mm とした.数値解 は理論解に近く,また増幅率の比例性も再現出来て おり,ガス増幅率の定量的な評価が十分可能である と思われる.理論解との間に若干の差が見られるが, これは電極を矩形として扱った結果,陽極近傍の電 場を低く見積もった為である.

図 4: ゲインカーブの数値解, 理論解の比較

図 5: イオン分布の変化によるポテンシャルの変化:印 加電圧は V=600 V

3.3 空間電荷効果によるゲインリダクション

空間電荷効果によるゲインリダクションの発生を 模擬するために、初期イオン対を増加させ計算を行っ た.配置は図 1 の model B とし、初期イオン対密度 を $n_{\rm e} = 10^{17} \, {\rm m}^{-3}$ まで増加させた.

図5に、時刻T=0,7,14nsにおけるイオン密度 分布とポテンシャルを示す。電子なだれにより生じ た陽イオンにより、ポテンシャルが変化している事が 分かる。図6に同時刻における電場を示す。陽極近傍 の電場は急激に低下し、一方で、時刻T=0での値

図 6: 時刻 T =0, 7, 14 ns における電場の変化

図 7: 空間電荷効果による信号の低下

と比べて電場の大きい領域が生じている.また,極 大値の位置の変化から分かるように,イオンの陰極 方向(正方向)へのドリフトと共に,電場のプロファ イルも移動しているのが確認できる.この場合の出 力信号を図7に示す.参考として,空間電荷効果の 無い場合(計算上,*T*=0から*φ*,*E*を更新しなかっ た場合)の信号も示す.2つの比較から空間電荷効果 によるゲインリダクションの発生が確認できる.

4. まとめ

開発した計算コードにより空間電荷効果によるゲ インリダクションを再現出来た.また,現状では若 干の誤差を含むが,ガス増幅率の定量的な評価を行 うことが出来た.今後,理論解との間に生じた誤差 の低減の為に,陽極近傍における空間格子の細分化 を行い円形状の表現を試みる.

5. 謝辞

計算法に関連して多くのご助言を頂いた,長岡技 術科学大学の佐々木徹博士に深く感謝致します.

参考文献

- [1] T. Furukawa, N. Saotome, et al., Med. Phys., 35 (2008) 2235.
- [2] S. Kato, et al., J. Plasma Fusion Res., 84 (2008) 477.
- [3] T. Yabe, T. Aoki, Comput. Phys. Comm., 66 (1991) 219.