Present status of the J-PARC MR BLM system

Kenichirou Satou^{1,A)}, Takeshi Toyama^{A)}, Yoshinori Hashimoto^{A)}, Masaki Tejima^{A)}, Seisue Lee^{A)} and Kazami Yamamoto^{B)}

^{A)} KEK/J-PARC

2-4 Shirakata-Shirane, Tokai, Naka-gun, Ibaraki, 319-1195

B) JAEA/J-PARC

2-4 Shirakata-Shirane, Tokai, Naka-gun, Ibaraki, 319-1195

Abstract

For the Main Ring synchrotron (MR) of J-PARC, two types BLMs that are the Proportional type Beam Loss Monitors (P-BLMs) and coaxial cable based Air Ionisation ion-Chambers (AICs) have been installed, however, up to the present, only the P-BLMs are mainly used at a beam commissioning. The sensitivities of the P-BLMs against a beam loss have been tested, where the beam loss was controlled by shift bump orbit at some points, injection area, slow extraction line, fast extraction line, and 1st Arc. The sensitivities are varied depending on the loss points and show clear gain reduction. A part of the AICs will be on operation from next beam run started from this October. In this paper, the present status of the beam loss monitor system is presented.

J-PARC MR のBLM システムの現状

1. はじめに

J-PARC MR加速器では定格750kWの陽子ビームが加速される。このような大強度加速器では、ビームロスによる機器の放射化が深刻であり、平均的に0.5W/mがビームロスの制限値である。これは運転上許容されるビームロス割合が3GeVの入射ビームに対して2%、50GeV(当面は30GeV)の取り出しビームに対して0.1%程度を意味する。実際には入射部や取り出し部などにビームロスが集中すると予想され、ビー

ムロスモニタ (BLM) システムに期待される測定ダ イナミックレンジは10⁴~10⁵レベルとなる。

現在このような高いダイナミックレンジを単一の モニタで達成するのは困難なように思える。我々は 複数のモニタを組み合わせ、トータルのシステムと して必要精度を達成することを念頭において整備を 進めている。

表1にMR用ビームロスモニタの特徴と整備状況を 示す。以下では各種BLMの整備・準備状況を報告す

タイプ	形状	電離ガス	印加電圧	設置数	ゲイン	特徵	用途	状况
比例計数 管タイプ P-BLM	2重同軸構造 中心導体Φ50μm 外導体Φ25mm 全長800mm	ガス封入 Ar+CO ₂ (1%) 1.1atm	0~-3kV (外導体 に対して 印加)	各Qマグネッ ト毎および コリメータ や取り出し ラインに計 316台	1~6×10 ⁴ (bias2kV 時)	利点 早い信号立ち上がり ゲイン調整可 <u>欠点</u> 誘起電荷の空間電荷効果に よるゲイン低下	ゲイン調整が可能 なため、詳細なロ ス状況を観測 MPSへ信号出力	運用中
同軸ケー プル空気 イオンチャ ンバー AIC	コルデル絶縁同 軸ケーブル 全長40m	Air latm	0~±2kV (外導体 に対して 印加)	ケーブルラッ ク上に87.1m 間隔で、3- 50BTに3台、 MRに18台	1	利点 安価 KEK-PSで20年の実績 <u>欠点</u> 信号の立ち上がりが遅い 耐放射線性	高線量率の測定に 利用 P-BLMの信号との 比を取ることでP- BLMのゲイン低下 をモニタ	本体設置済 み。ただし、 エレキ類が 未整備
イオンチャ ンパー I-BLM	2重同軸構造 中心導体Φ8mm 外導体Φ25mm 全長800mm	ガス封入 Ar+CO ₂ (1%) 1.1atm Or He+CO ₂ (1%) 1.1atm	0~±3kV (外導体 に対して 印加)	未設置	1	利点 高線量まで安定に動作 <u>欠点</u> 信号の立ち上がりが遅い	コリメータなど高 線量率地点の定点 観測 P-BLMの信号との 比を取ることでP- BLMのゲイン低下 をモニタ	開発中 試作機によ る性能評価 中
0SL 線量計 ルクセル 素子	バッチタイプ ドットタイプ			任意の位置 にそのつど 設置		利点 形状が小さいため位置分解 能が良い <u>欠点</u> RUN毎の積算値のみ検出可能	各BLMでカバーで きない地点を測定 BLMからの信号と の比較によりBLM リニアリティー チェック	試験中

表1 各ビームロスモニタの特徴と整備状況

¹ E-mail: kenichirou.satou@j-parc.jp

る。

2. BLMシステムの状況

2.1 P-BLMの現状

現在、ビームコミッショニングに使用しているの は比例計数管タイプBLM (P-BLM) である。Q電磁石 毎に216台、その他、3-50BTライン、入射ラインの コリメータ部、アボートラインなどに設置されおり、 計316台である。P-BLMに関する先の報告は文献 [1][2]にある。[1]にあるようにP-BLMは信号処理回 路を通して、生信号、およびその積分信号を出力す る。

生信号の早い立ち上がり特性を利用してMachine Protection System(MPS)にトリガー信号を供給する。 別途設定する信号レベルと比較し、あるレベルの ビームロス信号が発生した場合に、MPSにトリガー 信号を出し、ビームを即座にアボートダンプに捨て るシステムである。信号立ち上がりは100ns程度で あり、ビーム周回時間5µsと比べて十分早いと言え る。現在、定格ビーム加速に向け、トリガーレベル の探索や、様々なビームロス発生状況によるシステ ムの安定性を調査している。

積分信号の時間変化は1加速周期毎30回AD変換し、 EPICSレコード経由で上位計算機でモニタする。現 在のAD変換間隔は122msである。図1は早い取り出 し試験で取得したビームロス分布である。図からわ かるように、DCCTで観測されている入射後220msの ロスは、その発生時間との相関(b図)から、入射 ラインのコリメータ部で発生したことがわかる。さ らに、DCCTでは確認できない程度の微小なビームロ スが、取り出しタイミングで発生していることがわ かる(b, d図)。

P-BLMは自身に信号増幅作用を有していることから、ビームロス強度に応じてゲインを調整できる。 宇宙線を用いてP-BLMの信号増幅特性(ゲインカー ブ)を求めた。P-BLMからの信号をプリアンプで増 幅し、波形整形アンプを介してマルチチャンネルア ナライザーでスペクトル分析を行った。得られたス ペクトルを図2に示す。ピークは高エネルギーの ミューオンイベントに対応する。宇宙線エネルギー スペクトルとカウントレートは試験中ほぼ変化しな いため、ゲインをフリーパラメータにし、スペクト ルを再現するゲインを決定する。得られたゲイン カーブを図3に示す。

現在得られているダイナミックレンジは、ゲイン を適当に調整すれば1000程度である。ただし、P-BLMには、原理的に高カウントレート時のゲイン低 下現象が付きまとう^[4]。図4にビームを使ったキャ リブレーション結果を示す。コリメータ部、入射ダ ンプセプタム部、SX部、FX部、1st Arc部で、ローカ ルバンプでビームロスさせ、P-BLMによる信号強度 とDCCTによるロス粒子数との相関をとった例である。 1×10¹¹ppp程度からリニアリティーが変化している ことがわかる。これは移動度の低いイオンによる空

図1 早いビーム取り出し試験時のビームロス測定例。 a)はDCCTによるビーム強度測定結果、b) は各P-BLMのビームロス信号強度の時間依存性(時間原点は入射タイミングでa)の原点とは違 う)、c)は運転1周期分のP-BLM信号の積分値、d)はc)の縦軸を10倍拡大したものである。

間電荷効果により中心導体近傍の電場強度が弱めら れ、ゲインが低下した結果である。この結果は現在 のシステムでは高レベルのビームロス信号の観測は 難しいことを示している。現在ゲイン低下時の校正 法を調査中である。

2.2 イオンチャンバーの整備・開発

AICはコルデル絶縁タイプの全長40mの同軸ケーブ ルを利用したイオンチャンバーである。増幅作用が ないためビームロス信号に対する直線性がよく、 KEK-PSにおいて20年の使用実績もある。MRリング に18台および3-50BTに3台、等間隔に設置している。 ただし、アンプ、デジタイザー等の準備不足から運 用には至っていない。本年10月から一部が運用を開 始する予定である。

AICに加えて、現在使用しているP-BLMの中心導体 を8mmにした、増幅作用を持たないイオンチャン バーの開発も行っている。P-BLMは文献[2]にあるよ うに高い耐放射線性を有しており、その設計を継承 することにより、同等の耐放射線性が期待できる。 このモニタの一部は高レベルに放射化すると思われ るコリメータ部に設置する予定である。これにより、 放射線によるBLMの故障頻度を減らし、作業員の被 曝量を低減化する。

AICおよびI-BLMは増幅作用がないため微小なビー ムロス信号の観測には向かない。一方で高レベルの ビームロス信号に対しても直線性がよい利点がある。 つまり、これらのモニタは高レベルのビームロス現 象の観測に有効であると言える。

P-BLMではゲイン低下のため、イオンチャンバー については信号レベルが低いため、おのおの単体で はダイナミックレンジ10⁴~10⁵の達成は困難である。 比例計数管とイオンチャンバーの異なる特性を組み 合わせて高ダイナミックレンジを達成することを考 えている。さらに、イオンチャンバーとP-BLMの信 号を比較することにより、P-BLMのゲイン変動をモ ニタすることが原理的には可能である。

2.2 線量計の利用

線量計については、BLMのシステムチェック法を 試験している。線量計にはOSL素子を使用している。 この素子をリングの任意の場所(P-BLMなど)に貼 り付け、一定期間に受ける積算吸収線量を測定する。 積算線量とP-BLM等ガス検出器からの積算信号と比 較することにより、ガス検出器の相対感度校正が定 期的に行える。長期間の使用でできる中心導体の析 出物などにより、ゲインが変化した際、その異常検 出を簡便に行える。さらに、素子自体の形状が小さ いため、空間分解能がよいという利点もある。

3. まとめ

MR加速器のBLMシステムの開発状況を報告した。 現在ではP-BLMがビームコミッショニングに使用さ れている。開発中のI-BLMを含め、イオンチャン バータイプのBLMは開発・整備中である。比例計数 管タイプ (P-BLM)、イオンチャンバータイプ (AIC, I-BLM)の複合システムにより、BLMシステムの高ダ イナミックレンジを図ることが急務である。

参考文献

- T. Toyama, et al., "Beam loss monitoring using proportional counters at J-PARC", Proceedings of the HB2008, Nashville, Tennessee, USA, Aug. 25-29, 2008.
- [2] S. Lee, et al., Proc. of EPAC2004 (2004) P. 2007.
- [3] 本橋 重信 他, "J-PARC主リングのビーム・ロス・ モニタのデータ収集システムの改良",本学会.
- [4] R. W. Hendrics, Rev. Sci. Instrum., 40, 1216 (1969).

図2 バイアス電圧1585V時のP-BLM誘起電 荷スペクトル

