CHARACTERISTICS OF PARAMETRIC X-RAY RADIATIONS FROM DIFFERENT SILICON CRYSTAL PLANES

Manabu Inagaki^{1, A)}, Kyoko Nogami^{A)}, Yasushi Hayakawa^{A)}, Ken Hayakawa^{A)}, Toshinari Tanaka^{A)}, Keisuke Nakao^{A)}, Isamu Sato^{B)}

^{A)} Laboratory for Electron Beam Research and Application (LEBRA), Nihon University 7-24-1 Narashinodai, Funabashi-shi, Chiba 274-8501, Japan

^{B)} Advanced Research Institute for the Sciences and Humanities (ARISH), Nihon University 12-5 Goban-cho, chiyoda-ku, Tokyo 102-8251, Japan

Abstract

The parametric X-ray radiation (PXR) generator at the Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is composed of a double-crystal system to keep an identical direction of the X-ray output independent of energy range. Since the X-ray beam from the PXR generator system has a good spatial coherence and linear energy dispersion with narrow line width, wavelength dispersive X-ray absorption fine structure (DXAFS) measurement and phase-contrast imaging are expected as promising applications of PXR. The monochromatic X-ray beam in the energy region from 5 to 20 keV has been provided to users' experiments by using a Si(111) crystal as the PXR target. Recently the X-rays with energies up to 33 keV were obtained by using a Si(220) crystal. With a larger energy dispersion of the PXR beam from the Si(220) crystal as compared with the case of Si(111), a higher spectral resolution has been obtained in the X-ray absorption near edge structure (XANES) spectra measurement.

Si結晶面の違いによるパラメトリックX線放射の特性

1. はじめに

日本大学電子線利用研究施設(LEBRA)にあるパラ メトリックX線放射(PXR)発生装置は、真空チェン バー内に設置された二台のゴニオステージで構成さ れており、各々にシリコン(Si)完全結晶が備え付け られた二結晶型のシステムである^[1]。表1にLEBRA-PXRシステムの性能を示した。このX線ビームは、 コヒーレンスが良く、水平方向に一次関数的なエネ ルギー分散がある。さらに、X線取り出しポートの 直径(*φ*:100 mm)に由来する広範な照射野を持つこ となどの特徴を利用し、現在では、波長分散型X線

表1 LEBRA-PXRシステムの性能

電子エネルギー	100 MeV		
加速周波数	2856 MHz		
パルス幅	5 -10 µs		
繰り返し数	2 – 5 Hz		
第一結晶(ターゲット)	200 µm厚の		
	Si(111)およびSi(220)		
第二結晶(反射用)	5 mm厚の		
	Si(111)およびSi(220)		
X線エネルギー			
Si(111)	5.0 – 20 keV		
Si(220)	6.0 – 33 keV		
X線取り出しポート	直径100mm		
(カプトン窓)	125 µm厚		

¹ E-mail: inagaki@lebra.nihon-u.ac.jp

吸収微細構造(DXAFS)測定や回折強調型位相コント ラストイメージング(DEI)などの研究に応用されて いる^[2,3]。

速度vの電子ビームがBragg角 θ で逆格子ベクトルgを持つターゲット結晶に入射した際に発生するPXR エネルギー $\hbar\omega$ は、

$$\hbar\omega = \frac{\hbar c^* |\mathbf{g}| \sin\theta}{1 - \beta \cos\phi} \tag{1}$$

と表される^[1]。ここで $\beta = |v|/c^*$ 、 c^* は結晶媒質中の光 速度、 ϕ は電子の速度に対するX線の放出方向の角 度である。ここで中心軸に沿ってターゲット結晶か らの距離をL、中心軸からの水平方向の変位をxとす ると、PXRのエネルギー分散は以下となる。

$$\hbar\omega' \approx \hbar\omega \left(1 - \frac{x}{L\tan\theta}\right) \tag{2}$$

(2)式で示したエネルギー分散の特性を考慮すると、 ターゲット結晶上の電子ビームサイズと電子ビーム 軌道における揺らぎは、エネルギー分散の分解能を 制限する。幾何学的な考慮から、ターゲット結晶上 における水平方向の電子ビームの直径をΔdとすると そのエネルギー拡がりΔE_dは、

$$\Delta E_d \approx \hbar \omega \frac{\Delta d}{L \tan \theta} \tag{3}$$

と概算される^[4]。したがって高分解能を得るには、 電子ビームの良いフォーカスと安定性、距離Lの十 分な確保、Bragg角の増大が考えられる。そこで、 これまではSi(111)結晶を使用し、電子ビーム条件と スペクトル分解能の相関を調べた結果、エネルギー 拡がりが小さい場合にはスペクトル分解能が向上す ることがわかった^[5]。

2009年4月、さらにPXRの高エネルギー化のため に、ターゲット結晶をSi(220)結晶に変更した。(3)式 を用いて、ターゲット結晶からの距離Lが7.54 m、 PXRの中心エネルギーが9.0 keVにおける理論的なエ ネルギー分布を図1に示した。この図からわかるよ うに、発生するPXRの中心エネルギーがSi(111)結晶 と同じ場合、Si(220)結晶はBragg角のが大きいので、 エネルギー拡がりが小さくなる。そこで、X線吸収 端近傍構造(XANES)スペクトルを測定して、実際に スペクトル分解能が向上するかを調べた。

図1 中心エネルギー9.0 keVの理論的なエネル ギー分布

2. 実験方法

図2のような実験セットアップで、Si(220)ター ゲット結晶から発生したPXRを試料に照射した。試

図2 ターゲット結晶上の電子ビームサイズおよ びXANESスペクトルの測定のためのセットアッ プ概略図

料はターゲット結晶からの距離が7.535 mの位置に 設置し、検出器には受光面が12×12 mm² (512×512 pixels)のX線用CCDカメラを用い、それを試料から 5 mm後方に設置した。試料は、5 μm厚のCu箔およ び約6 μm厚のCuOシートを用いた。

得られたX線吸収画像は、水平方向の位置がX線 のエネルギーに対応するため、一点でもX線エネル ギーが判断できれば式(2)を用いることによって、X 線エネルギーの較正ができる。さらに、透過X線強 度は濃度として画像に現れるので、水平方向の位置 (X線エネルギー)における濃度分布を調べるといっ た簡単な画像分析を施すことによって、容易に試料 透過後のX線強度を得ることができる。したがって、 各々測定した入射X線強度と透過X線強度から吸光 度を求め、XANESスペクトルが得られる。これら のXANESスペクトルをSi(111)の場合と比較し、 ターゲット結晶面によるスペクトル分解能の違いを 調べた。

3. 実験結果

3.1 PXRビームのエネルギー拡がり

結晶面によるエネルギー拡がりの違いを比較する ために、エネルギー拡がりに影響する水平方向の電 子ビームサイズムdは、Si(111)結晶で測定した場合と ほぼ同じ大きさに調整した。ここで、電子ビームサ イズは、ターゲット結晶に電子ビームが照射した際 に発せられる遷移放射光(OTR)から推定した^[5]。図3 に各ターゲット結晶上におけるOTRプロファイルを 示し、表2に推定した電子ビームサイズを示した。 このとき、式(3)を用いてターゲット結晶からの距 離Lが7.54 mの場合に推定されるエネルギー拡がり は、(a)Si(111)結晶のとき6.2 eV、(b)Si(220)結晶のと き3.2 eVであった。

図3 ターゲット結晶上のOTRプロファイル。 (a)Si(111)結晶、(b)Si(220)結晶である。

表2 OTR画像から得られた電子ビームサイズと PXRビームのエネルギー拡がり

OTRプロファイル		(a)	(b)
ビームサイズ	水平	1.16	1.03
(FWHM) [mm]	垂直	1.10	2.14
エネルギー拡が	り [eV]	6.2	3.2

3.2 XANESスペクトル

中心エネルギー8.99 keVのPXRを60分間(照射積分時間:マクロパルス換算で約36 ms)照射して測定した。この結果、得られたXANESスペクトルを図4に示し、Si(111)結晶で得られたスペクトルおよび他施設で得られたデータ^[6,7]とも比較した。

図4から、CuのXANESスペクトルについて、ター ゲット結晶にSi(111)結晶を用いた場合は、吸収端の 中点付近に隆起がある特徴的なピーク(図4a中の矢 印)が明確ではなかったが、Si(220)結晶の場合には 明瞭に確認できた。また、吸収端直後の二つの振動 成分についても、Si(111)結晶では吸収度にあまり差 が生じなかったが、Si(220)結晶では正確に振動成分 が分離されている。さらに、Si(220)結晶で得られた XANESスペクトルは、他施設のデータと比較する とさほど差異のない結果が得られたと判断できる。

CuOのXANESスペクトルについて、Si(220)結晶 では吸収端の中点付近にある特徴的なピーク(図4b 中の矢印)が明確に現れた。これと比較して、 Si(111)結晶および他施設では構造が確認できる程度 で明瞭ではない。ここで、LEBRAで得られた XANESスペクトル全体からは細かい構造が見える が、これは照射時間が短かったことによりS/N比が 小さい、あるいは粉末試料をシート状に調製すると きに生じた試料厚のムラによるものと考えられる。 したがって、この特徴的なピーク(図4b中の矢印)は、 実際の構造なのか、あるいは前述の要因に由来する 構造なのか判断できない。

次にCuのXANESスペクトルについて、詳細に考 える。図4(a)の吸収端の立ち上がりから吸収端の中

図4 Si(111)およびSi(220)結晶を用いて得られた 5 µm厚のCu箔(a)と約6 µm厚のCuOシート(b)の XANESスペクトル。

図5 Si(220)を用いて得られた5 µm厚のCu箔の XANESスペクトルと他施設のデータに移動平均 を施したXANESスペクトルとの比較

点付近にある特徴的なピークまでの傾きに着目し、 他施設と比較することにした。他施設のデータにど の程度の移動平均を施せば同等の勾配になるかを調 べた。他施設のデータに各々1.5、2.0、3.0 eVの移動 平均を施したXANESスペクトルの結果を図5に示し た。その結果、LEBRAの傾き(図5中矢印)は0.12で あり、他施設は移動平均1.5 eVのとき0.14、2 eVの とき0.13、3 eVのとき0.11であった。すなわち、他 施設のデータに2 eV程度の移動平均を施したとき、 LEBRAの傾きとほぼ同じになることがわかった。 したがって、表2で示した3.2 eVのエネルギー拡がり は、それより小さく2 eV程度であると考えられる。

以上の結果、理論から予測された通りSi(111)結晶 よりもSi(220)結晶から発生したPXRの方が高スペク トル分解能であることが実証された。

4. まとめ

ターゲット結晶をSi(220)結晶に変えて、CuとCuOのXANESスペクトルを得た。この結果をSi(111)結晶と他施設と比較したところ、スペクトル分解能が向上していた。6.0-20 keVにおいて高スペクトル分解能が要求されるXANES測定の場合、Si(111)結晶よりSi(220)結晶の方が有効であると示唆される。

参考文献

- [1] Y.Hayakawa et al., Nucl. Instr. and Meth. B 227 (2005) 32-40.
- [2] Y.Hayakawa et al., Nucl. Instr. and Meth. B 266 (2008) 3758-3769.
- [3] Y.Hayakawa et al., in these proceedings (2009).
- [4] Y.Hayakawa et al., Proceedings of SPIE 6634 (2007) 663411-1 – 663411-10.
- [5] M.Inagaki et al., Jpn. J. Appl. Phys. 47 (2008) 8081-8086.
- [6] M.Newville et al., J. Synchrotron Radiat. 6 (1999) 276-277.
- [7] http://cars9.uchicago.edu