STABILITY OF RADIO FREQUENCY SYSTEM AND BEAM AT RIKEN RIBF

Kenji Suda^{1,A)}, Masaki Fujimaki^{A)}, Nobuhisa Fukunishi^{A)}, Masatake Hemmi^{A)}, Osamu Kamigaito^{A)}, Masayuki Kase^{A)}, Ryo Koyama^{A,B)}, Keiko Kumagai^{A)}, Naruhiko Sakamoto^{A)}, Tamaki Watanabe^{A)}, Kazunari Yamada^{A)}
A) RIKEN Nishina Center for Accelerator-Based Science
2-1 Hirosawa, Wako, Saitama, 351-0198

B) SHI Accelerator Service Ltd.

1-17-6 Osaki, Shinagawa, Tokyo, 141-0032

Abstract

At RIKEN RI Beam Factory (RIBF), all the accelerating RF systems must be stable enough for a long term in order to provide high intensity heavy ion beams up to $1p\mu A$. We investigated a present degree of the stability of the RF systems for an injector LINAC (RILAC) and the RIKEN Ring Cyclotron (RRC). The relation between RF voltage/phase of RILAC and beam phase was confirmed assuming a simple linear function. Our efforts in order to achieve better stability of the RF systems will be also reported.

理研RIBFにおける高周波系およびビームの安定度

1. はじめに

理研RIビームファクトリー(RIBF)では、入射器 (線形加速器RILACあるいはAVFサイクロトロン)と4 台のサイクロトロン(RRC, fRC, IRC, SRC)を多段式 に用いて、ウランなどの重イオンビームをRIビーム の生成に適したエネルギーである 345 MeV/u まで 加速する (図1)。ビームの通過効率を向上させるこ とにより、これまでに 48Caビームについて最大電 流 170 pnA ²³⁸Uでは 0.4 pnA を供給することが できた[1]。最終的な目標となるビーム電流は1pμA と大変大きいため、高周波(RF)系のこれまでよりも ー段高い安定性が求められている。そこで、ロック インアンプを用いた測定システムを開発し、RFの電 圧・位相およびビーム強度・位相の常時監視を行っ ている[2]。現在、入射器であるRILACの測定データ を解析し、RFの安定度、およびRFの変動がビーム位 相に与える影響を評価している。また、受電電圧、 気温、および冷却水温についても監視を行っており、 これらの要因がRILACあるいはRRCのRFに影響を与え ていることが判明した。そこでRF安定化のための改 善策をとったり、今後の対処を予定している。

図1: RIBFの俯瞰図。文献[2]の図1より。

2. RILAC RFの安定度解析

理研重イオン線形加速器 RILAC[3]は可変周波数型 (17-45 MFz)の加速タンク6台により構成されている。 RFの長期的な安定度の目標値は 0.1%、0.1°である。 この値は以下に示すような計算から求められる。ま ず、これまでの解析結果(図6参照)から、RFの電圧 および位相がそれぞれ 1%、1°変動した場合に、 RRCへ入射するビームの位相は最大で1.0ns、0.5ns 程度変化することがわかっている。ここで、位相幅 を1%、つまり、0.076 ns (=1/36.5 MHz/360°)に収 めるとすると、

0.076 ns/ 1.0 ns * 1% = 0.08% (電圧) 0.076 ns/ 0.5 ns * 1°= 0.15°(位相) という目標値が得られる。

ローレベル回路については、#2、#5、#6のタンク に使っている自動振幅調整器(AGC)はSRCで実績のあ る新型であり、外気温の変動に対して安定に動作す るようにフィードバック回路の主要部分が恒温槽に 入っている。その他の3台のAGCは旧型であり温度制 御がないため、この9月に新型に更新予定である。

RFの電圧・位相およびビーム強度・位相の測定は、 ロックインアンプSR844を用いたシステムにより 行った[2]。その他、真空管アンプのプレート電源 の受電電圧(6.6 kV)および各種冷却水の温度につい てもそれぞれ異なるシステムにより測定した。

図2に、2008年12月7日から8日にかけて測定した RFの電圧偏差および位相変動のデータ(周波数 36.5MHz, 48 Caビーム)を示す。安定度を評価しやす くするため、極端に大きな変動が起きた場合にのみ 人為的に電圧あるいは位相の設定パラメータを変え ている(図中に Tuning と表記)。電圧偏差は各タン クとも±0.1%の範囲に収まっているが、位相変動は #1、2および5 のタンクのそれが大きく、全体とし て±0.4°となっている。

図2には電圧偏差に受電電圧を重ねてプロットしているが、受電電圧の細かいスパイク状の構造が #3、4の電圧変動と非常に良く似ていることがわかる。定性的に評価するため、RFの電圧偏差と受電電 圧の相関係数を計算した。受電以外の影響によって もRFが変動することを考慮し、1分あたりの変動量 (差分)を変数として相関係数を求めた(図3)。旧型 のAGCを使用している #1、3および4のタンクについ て有意な相関がみられ、それらが受電の影響を受け やすいことがわかる。前述のように予定している AGC更新により、RF電圧が受電変動に対してより安 定すると期待できる。

図2と同じ時間に測定されたビーム強度と位相の データを図4に示す。検出に用いた3台のフェーズプ ローブ(PP)はRILACからRRC入射までのビームライン に上流からPP-e11、X51、S71の順に設置されている (図1参照)。特に PP-S71はRRCの入射直前に位置す る。ビーム強度の変動は主にイオン源に起因する。 RILACでは、RF電圧・位相の変動がビーム位相に与 える影響がタンクによって異なることがわかってい る。RFの変動が十分小さければ、一次の変動でビー ム位相を表すことができるはずである。そこで、次

図2: RILAC RFの電圧偏差(上)および位相変動(下)。 安定度測定のため、初期状態から大きくずれた場合 にのみ電圧や位相を調整している(tuningと標記)。

図4: 3台のフェーズプローブを用いて観測された ビームの強度(上)および位相(下)

のような式を用いてフィッティングを行いタンク毎 の影響の大きさを調べた。

$$t^{\text{beam}} = \sum_{i=1}^{6} (a_i V_i^{\text{RF}} + b_i \phi_i^{\text{RF}}) + c$$

図5: ビーム位相のデータとフィッティング結果

図6: フィッティングで得られたパラメータ a_i(左)、 b_i(右)

ここで、t beam、ViRF、および ϕ_i RFは、それぞれビー ム位相[nsec]、RFの電圧偏差[%]、および位相差 [度]の測定値である。a_i、b_i、cはパラメータで、i はタンクの番号に対応する。図4の黄色で示した範 囲(1:00-2:25)のデータを用いてフィッティングを 行った。得られた結果を図5、6に示す。図5はビー ム位相について、フィッティングで得られたパラ メータを上記の式に代入して求めた値と測定値を比 較したものである。RF変動の重ね合わせにより、 ビーム位相の細かい構造が良く再現されている。し たがって、ビーム位相の変化が実際にRFの変動に起 因していることが確認できた。図6は、得られたパ ラメータ ai、bi をプロットしたものである。パラ メータ aiは、RFの電圧変動がビーム位相に与える 影響度を示している。タンク#3から#6では e11より も X51 が2倍以上大きくなっているが、S71では、 ほぼ e11と同程度の小さい値に戻っている。これは、 第2、3リバンチャー(図1参照)による位相圧縮効果 のによるものと考えられる。biはRFの位相変動の影 響度を示すが、タンク間の傾向の違いが表れている。 #3および#5の影響は下流側に行くほど小さくなって いるのに対し、その他のタンクではほぼ一定である。 このような傾向となる理由は不明なので、今後さら に解析を進めていくつもりである。

RRCのローレベル回路更新、冷却水温 の影響

RRCが1986年に完成して以来、ローレベル回路は

当時設計されたものを使用してきた。RRCでは2台の 加速空洞(#1、#2)の相対位相を一定に保つため、#2 のピックアップ信号をリファレンスにして#1の位相 を追従させている。なお、他のサイクロトロンでは この方式は採らず、各空洞の位相は独立である。し かし、この追従がうまくいかず、#1の位相安定度が 悪い場合があることがわかった。例えば、ウラン加 速の場合(18.25 MHz)であるが、ディー電圧が比較 的低く(~70 kV/gap)、ピックアップ信号が小さい ことに起因していると考えられる。その他の例とし て、RIBF稼働時ではないが従来施設へRRCからビー ムを供給した時のデータを図7に示す。#2に比べて #1の位相は安定しておらず、0.3°程度の変動があ る。RIBFではこれまで以上の安定度が要求され、安 定 度 の 目 標 は RRCに つ い て も RILACと 同 様 に 0.1%、0.1°である。そこで、安定度改善を目指し て2008年9月にローレベル回路の更新を行った。2台 の加速空洞についてAGC 自動位相調整器(APC)、自 動同調回路(ATC)を全て交換した。AGCとAPCには、 RILACの場合と同様に、フィードバック回路の温度 調整機能が付加されている。更新の際、リップルを

低減させるようフィードバック定数の調整も行った。 その結果得られた安定度データを図8に示す。#1の 位相変動は0.08[°]程度となり、#2と同程度に安定化 させることができた。

RF電圧については、以前から約10分周期の変動が 観測されていた。水温データとの比較から、この変 動はRRCの本体系冷却塔からの冷却水温度と同期し ていることがわかった。図9に、48Ca加速時のデー タを示す。冷却水温は10分周期で±0.3℃変化し、 それに対応してRF電圧は±0.05%の変動をしていた。 また、ビームの強度も実際にRFと同期して変動して いることも確認された。そこで、冷却塔のファンの 自動温調を停止させ、手動運転に切り替える対処を 行ったところ、この周期的な変動を抑えることがで きた。

4. 信号分配器の温度依存性

RIBFでは、信号発生器(マスターオシレータ)から の基本波を分配器を用いて分配し、必要に応じて逓 倍してから各加速空洞のローレベル回路に供給して きた。ウラン加速の場合、fRCに供給する信号は、 まず信号分配器(PD1f)を通り、次に3f逓倍器(fRC 3f)を用いて逓倍される(図10)。fRCの位相が突然シ フトする現象が数回発生したため調査したところ、 分配器の出力電圧が気温によって変化し、信号電圧 の変動が 3f逓倍器の位相に影響を与えていること がわかった。この様子を図11に示す。分配器は物品 搬入口に近い位置に設置されており、周辺の気温の 変化が比較的大きかった。また、分配器は温度調整 されていないため、温度変化の影響を受けやすい。 その結果、fRCの位相シフトの問題が顕在化したと 考えられる。分配器を使用せず、方向性結合器を用 いて信号分配を行う方法に変更したところ、この問 題は解決した。ただし、他にも分配器を使用してい る箇所があり、それがRFを不安定にさせる要因に なっている可能性がある。このため、今後は可能な 限り方向性結合器を用いて信号分配を行うようにす る予定である。

図10: fRCへの信号分配の経路

参考文献

- N. Fukunishi et al., PAC'09, Vancouver, May 2009, MO3GRI01.
- [2] R. Koyama et al., Proceedings of PASJ5-LAM33, WP007, p. 318 (2008).
- [3] M. Odera et al., Nucl. Instrum. Methods A227, p. 187 (1984).