Longitudinal Painting by Using Large Amplitude Second Harmonic RF

 Fumihiko Tamura*, Masanobu Yamamoto, Masahito Yoshii, Chihiro Ohmori, Masahiro Nomura, Alexander Schnase, Makoto Toda, Hiromitsu Suzuki, Taihei Shimada, Keigo Hara, Katsushi Hasegawa
J-PARC Center, KEK & JAEA, Tokai-mura, Naka-gun, Ibaraki-ken, Japan 319-1195

Abstract

For stable acceleration of the high intensity proton beams, increasing the bunching factor by the longitudinal painting is essentially important to reduce the space-charge tune shift. The momentum offset injection method and applying the second harmonic RF are employed for the longitudinal painting in the J-PARC RCS. We employ wide band magnetic alloy (MA) cavities to realize the dual-harmonic operation, in which each cavity is driven by the superposition of the fundamental and the second harmonic RF signals. By the dual-harmonic operation we can generate the large amplitude second harmonic RF without extra cavities for the second harmonic. We report the beam test results of the longitudinal painting.

大振幅の2倍高調波重畳による縦方向ペインティング

1. はじめに

大強度陽子加速器施設 (J-PARC)の速い繰り返し のシンクロトロン (RCS)では、大電流陽子ビーム加 速の際のスペースチャージチューンシフトを軽減す るために、入射時に、横方向のペインティングに加 え、縦方向のペインティングを行うことが必要であ る。J-PARC RCS では、縦方向ペインティングの手法 として、運動量オフセット入射と2倍高調波重畳を 採用している。

表1にRCSのパラメータを示した。金属磁性体 (MA)空胴を採用し、Q = 2という広帯域に設定する ことにより、高い最大加速電圧を発生させるととも に、デュアルハーモニック運転^[1]を可能にしている。 デュアルハーモニック運転では、加速に用いる基本波 (h = 2)とバンチ整形に用いる2倍高調波(h = 4)を 重畳したRF電圧でそれぞれの空胴を駆動する。これ により、2倍高調波専用の空胴を準備することなく、 大振幅の2倍高調波を発生させることが可能となっ た。RCSでは、基本波に対し80%以上の振幅の2倍 高調波を発生させることができる。周長が限られて いるRCSにおいては、デュアルハーモニック運転は 必須である。

ペインティングの評価に、平均電流とピーク電流の比、 $B_f = (平均電流)/(ピーク電流)$ で定義される

表 1: Parameters of the J-PARC RCS and its RF system.

circumference	348.333 m
energy	0.181-3 GeV
accelerating frequency	0.938-1.671 MHz
harmonic number	2
maximum RF voltage	450 kV
repetition	25 Hz
No. of cavities	11
Q-value	2

* fumihiko.tamura@j-parc.jp

表 2: Beam test parameters.	
MHz	
Iz	

バンチングファクターを用いる。RCS では、1 MW 運転時には、入射時の B_f を 0.4 以上とすることが必要である。

今回の試験では、ビームを加速しながら、ペイン ティングのパラメータの調査を行った^[2]。

2. ビーム試験結果

表 2 に、ビーム試験のパラメータを示した。今回 の試験では、2 バンチで 0.8×10^{13} 個の陽子を加速 している。これは、25 Hz 運転で 100 kW 相当のビー ムになる。マクロパルス幅は $500 \mu \text{s}$ であり、磁場の 励磁のボトム前後 117 ターンずつ、計 234 ターンに 相当する。

ウォールカレントモニター (WCM) からのビーム 信号を、LLRF システムで生成した周回クロック信号 とともにロングメモリオシロスコープ (WP950) で記 録し、PC で処理した。

今回の試験では、2 倍高調波の振幅、および運動量 オフセットをパラメータとして、バンチ波形、バンチ ングファクターの比較を行った。基本波に対する2倍 高調波振幅は、入射から1 ms までは最大の比率で保 持し、その後比率をリニアに減少させ、3 ms でゼロ となるパターンとした。運動量オフセットは、ηをス

図 1: 入射後のマウンテンプロット。上段:基本波のみ、中段:2倍高調波振幅 50%、下段:2倍高調波振幅 80%。左から右に、運動量オフセット 0%、-0.2%、-0.4%の順。

図 2: 入射後 250 ターンでのバンチ波形。上段:基本波のみ、中段:2 倍高調波振幅 50%、下段:2 倍高調波振幅 80%。左から右に、運動量オフセット 0%、-0.2%、-0.4%の順。

図 3: 入射後 1000 ターンまでのバンチングファクター。左:基本波のみ、中:2 倍高調波振幅 50%、右:2 倍 高調波振幅 80%。それぞれのプロットで、赤:運動量オフセットなし、緑:-0.2%、青:-0.4%。

図 4: 2 倍高調波振幅 80%、運動量オフセット -0.2%に加え、位相スイープ 80 度を加えた時のマウンテンプ ロット、250 ターンでのバンチ波形、バンチングファクター。

リッページとして、 $df/f = \eta \times dp/p$ で定義される周 波数オフセットを与えることにより実現した。また入 射期間中に基本波に対する2倍高調波の位相をスイー プする、「2倍高調波位相スイープ」も行った。これに より入射期間中の RF バケツの形を動的に変化させ、 より効率的にペインティングを行うことができる。2 倍高調波位相スイープでは、基本波に対する2倍高 調波の位相を、 $\phi_{(h=4)} = \frac{\phi_{sweep}}{T_{inj}} \left(t - \frac{T_{inj}}{2}\right) - 2\phi_s$ [度] のように変化させる。ここに、 $\phi_{(h=4)}$ は2倍高調波 の位相、 ϕ_{sweep} は設定したスイープの範囲、 T_{inj} は入 射期間、 ϕ_s は同期位相である。

基本波のみ、2 倍高調波振幅(基本波に対し) 50%、 80%の時に、運動量オフセットを0%、-0.2%、 -0.4%設定した時のマウンテンプロットを図1、250 ターンでのバンチ波形を図2、バンチングファクター を図3に示した。基本波のみで運動量オフセット0% (ペインティングを行わない場合)では、バンチ中央付 近の電荷密度が高くなることがわかる。入射直後の 250 ターン付近ではバンチングファクターは0.2 程度 である。運動量オフセットを-0.2%、-0.4%と与え ていくと、ビームはホロウになっていき、またバン チングファクターはそれぞれ0.27、0.3 程度まで改善 する。また、四極振動が増加し、バンチングファク ターの振動が見られる。

2 倍高調波 50%の場合、運動量オフセットなしで、 バンチングファクターは (250 ターン付近で) 0.28 程 度まで改善する。2 倍高調波 50%の場合は、運動量 オフセットによりバンチ波形はホロウになっていく が、オフセットを -0.4%までかけた場合でも、バン チングファクター改善の効果があまり見られなかっ た。2 倍高調波 50%と運動量オフセットの組み合わ せは、あまり良くないことがわかる。

2 倍高調波 80%の場合、RF バケツは中心がくびれ た形となるため、運動量オフセットなしの時、バン チもピークをふたつ持つ形となる。運動量オフセッ トは -0.2%がバンチ波形もあまりホロウにならず、 250 ターンでのバンチングファクターも約 0.32 と最 も良かった。この条件で、2 倍高調波位相スイープを 80 度加えた時のデータを、図 4 に示した。バンチは 非常に平坦であり、250 ターンでのバンチングファク ターは 0.4 近くを達成した。また、バンチングファク ターの振動が非常に少ないことから、四極振動も少 ないことがわかる。

今回の試験では、ペインティングの有無によらず ビームロスは少なく、3%以下だった。より大強度の 場合にはペインティングによるロスの低減効果が見 られるものと期待される。

3. まとめ

2 倍高調波を大振幅 (基本波に対して 80%の振幅) で重畳することにより、非常に効率的な縦方向ペイ ンティングができることを実証した。今後は、より 大強度のビームを用い、横方向のペインティングと 組み合わせ、ロス低減の効果を検証していく。

参考文献

- [1] F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 11, 072001, 2008.
- [2] F. Tamura et al., Phys. Rev. ST Accel. Beams, vol. 12, 041001, 2009.