Future plan of Laser Undulator Compact X-ray source (LUCX)*

Masfumi Fukuda^{1,A)}, Sakae Araki^{A)}, Abhay Deshpande^{A)}, Yasuo Higashi^{A)},

Yosuke Honda ^{A)}, Kazuyuki Sakaue ^{B)}, Noboru Sasao ^{C)}, Mikio Takano^{D)},

Takashi Taniguchi ^{A)}, Nobuhiro Terunuma ^{A)}, Junji Urakawa ^{A)}

^{A)} High Energy Accelerator Research Organization

1-1 Oho, Tsukuba-shi, Ibaraki, 305-0801, Japan

^{B)} Research Institute for Science and Engineering, Waseda University

17 Kikui-cho, Shinjuku-ku, Tokyo, 162-0044, Japan

^{C)} Research Core for Extreme Quantum World, Okayama University

Tsushima-naka 3-1-1, Okayama 700-8530, Japan

^{D)} Saube Co., Ltd.

3-17-3 Hanabatake, Tsukuba-shi, Ibaraki, 300-3261, Japan

Abstract (英語)

We have developed a compact X-ray source based on inverse Compton scattering of an electron beam and a laser pulse stacked in an optical super-cavity at LUCX accelerator in KEK. The X-ray generation has already been confirmed but some problems have been found at the same time. To overcome the problems and to increase the number of X-rays, we have decided to upgrade of the accelerator and the super-cavity. Firstly, a new rf-gun with high mode separation and high Q value and a new klystron for the gun will be installed to get the good compensation with a high-intensity multibunch electron beam. Secondly, a new optical super-cavity consists of 4 mirrors will be installed to increase the stacked power in the cavity and to reduce the laser size at the focal point. The first target is to produce a multi-bunch electron beam with 1000 bunches/train, 0.5nC/bunch and 5MeV without the accelerating tube and to generate a soft X-ray by inverse Compton scattering. In this paper, the upgrade plan will be reported.

KEK小型電子加速器(LUCX)の将来計画

1. はじめに

我々は高エネルギー加速器研究機構(KEK)に設け た小型電子加速器(LUCX) (図1) でパルスレーザー 共振器を用いた逆コンプトン散乱による小型X線源 の開発を行っている。現在は量子ビーム基盤技術開 発プログラムにおいて、このためのパルスレーザー 共振器、これを用いたX線生成技術、X線検出器の 開発を行っている。X線(33keV)は光共振器内に 蓄積されたレーザーパルス(1064nm)と電子ビーム (43MeV)とのコンプトン散乱により生成する。高輝 度X線源としてはGeVオーダーの電子ビーム蓄積リ ングを利用したものがあり、高輝度で高い安定性を もつが、一般的に装置が巨大で高価であり使用でき る場所は限られている。しかしレーザーコンプトン 散乱の方法ではGeVオーダーの蓄積リングを用いた 放射光によるX線源に比べ、より低いエネルギーの 電子ビームで同じエネルギーのX線を得られるため、 蓄積リングを小型化でき比較的安価に装置を構築で きることが期待される。

この小型電子加速器では、第1段階として電子源

現在の小型電子加速器ビームライン

の開発を行い、220nC/train、100bunches/trainのマル チバンチ電子ビームの生成に成功した[1]。そして第 2段階として加速管を追加し40MeVまでエネルギー を上げ^[2]、レーザー蓄積装置を用いた逆コンプトン 散乱による X 線 生 成 実 験 を 行 い 、 40nC/train、 100bunches/trainの電子ビームと蓄積パワー40kWの レーザーとの衝突によりX線を生成し、ほぼ予想値 と一致した1x10⁴ photons/trainのX線が得られた^{[3][4]}。 ただ同時に、電子ビームのバンチ間隔のずれや光共 振器のミラー損傷など、いくつか問題も判明した。 現在は、これを解決するために、この加速器のアッ プグレードを計画している。本稿では、この小型電 子加速器での今後の計画について報告する。

^{*} Work supported by a Grant-In-Aid for Creative Scientific Research of JSPS (KAKENHI 17GS0210) and a Quantum Beam Technology Program of JST

¹ E-mail: mfukuda@post.kek.jp

2. アップグレード計画

アップグレードにより、今までの実験で判明した 問題を解決し、さらに電子ビームおよびレーザー強 度の上げ、生成X線数の増大を目指す。電子ビーム 側ではKlystron1台でRF電子銃と加速管にRFを供給 していることに起因する問題があったので、RF電 子銃用に新たに1台Klystronを追加する。さらにRF 電子銃も新しいもの^[5]に交換する。またレーザー側 は4枚のミラーで構成される光共振器を新たに導入 する。これに伴い、運転モードも変更し、今までの 加速管で50MeVまで加速する運転に加えてRF電子 銃単独運転で5MeVでの運転も予定している。この ため両方のエネルギーでX線生成実験を行えるよう ビームラインの改修も行い、衝突技術および検出器 開発を行う。ここで得た技術は量子ビーム基盤技術 開発プログラムにおいて行われる超電導ビームライ ンでのX線生成にも生かせると期待される。

2.1 電子ビーム側のアップグレード計画

電子ビーム側での問題^[3]は、マルチバンチビーム のバンチ間隔のずれ、RF電子銃での放電やこの暗 電流によるX線検出におけるバックグラウンド信号 などであり、これらはKlystron1台からRF電子銃と 加速管の両方にRFを供給している(図2左)ことが原 因となっている。

マルチバンチビーム加速時のビームローディング 補正はRFを満たす過渡期にビームを乗せる方法を 採用し、最終的にバンチ間エネルギー差を1%に抑 えられているが、RF電子銃出口ではその差が残っ ている。これはRFにビームを乗せるタイミングを 加速管側に合わせ、RF電子銃でのそれは最適なも のより早めになっているからである。

この残ったバンチ間エネルギー差はバンチ間隔 (2.8ns)のずれを引き起こし、2.8nsで往復している光 共振器内のレーザーパルスとの衝突タイミングがず れてしまう原因になっている。これはビームエネル ギーが4MeV程度と低いので、十分光速に近いとは 言えず速度差があるため、エネルギー差が加速管ま での到達時間の差となって現れるためである。また シケインでも軌道差から到達時間の差が生じていた。

またRFにビームを乗せるタイミングを早くして 加速電場が低くなった分、RRCS(パルス圧縮機)で 増幅した高いパワーのRFを入力し補っているため、 放電が起きやすくなっている。このためローディン グ補正に十分な電場強度まで上げられず当初予定の 200nC/trainまでビーム電流が増やせず、50nC/trainま でに制限されている。

他にもX線検出におけるバックグラウンド信号において、RF電子銃からの暗電流に起因するものが 全体の50%以上を占めていた。

これらを改善するため、まずRF電子銃用の Klystron(TOSHIBA E3729, 24MW, 24us)1台を新たに 導入し(図2右)、RF電子銃と加速管のそれぞれ独立 にRFとビームとのタイミングを調整できるように して、RF電子銃で残っていたエネルギー差を解消 する。また、無理に高いパワーのRFを入れずにす

図2 現在(左)と変更予定(右)のRF system むため、放電が抑えられ、予定の200nC/trainまで ビーム電流が増加できると期待される。

また、電子ビーム強度や品質向上、暗電流の低減 のため、新しいRF電子銃^[5]も導入する。これは従来 と同じ1.6cellであるがCavityの構造は異なっており、 ビーム軸方向に向かった壁面の構造は滑らかな曲線 になっている(図3)。さらにチューナーもCavity内部 に突き出さず、表面を押して変形させるタイプに変 更、さらにレーザー光を入射するための斜めポート もなくした。このためQ値は14000と現在のRF電子 銃の約1.8倍になっており、加速電場が高くなる分、 空間電荷効果を抑えられエミッタンスが改善すると 期待される。また表面がなめらかになった分、暗電 流の減少も期待される。もうひとつの特徴はπモー ドと0モードの共振周波数差も8.62MHzと従来の約 2.5倍になっていることである。

図3 新しいRF電子銃の断面と写真^[5]

2.2 パルスレーザー光共振器側のアップグレード

レーザー側での問題は、光共振器内のレーザーパ ルスのピークパワーが高くミラー表面の誘電多層膜 を破壊してしまうことである。バーストモードでは レーザーをフラッシュランプでアンプしてから光共 振器に入射し、電子ビームとの衝突の瞬間だけパ ワーを上げている。このときにミラー表面上での ピークパワーが閾値(10GW/cm²)を超えて誘電多層膜 を破壊してしまうため、これを超えない程度にパ ワーを抑えなければならなかった。2枚ミラーの共 振器ではミラー上のサイズを広げるためには曲率を 共振器長の半分に近づけなければならず(Concentric)、 焦点サイズは小さくなるがミラーの設置誤差に非常 に敏感になってしまい不安定になる。

そこで4枚ミラーで構成される光共振器を開発し 導入することを予定している。この共振器では Confocalとなるため、ミラー上のサイズを広げやす く、レーザーパワーを上げられる。この光共振器に 関しては[6]を参照のこと。

2.3 新しいビームライン

これらに伴い、RF電子銃単独運転で5MeVのビームと、RF電子銃と加速管で50MeVのビームの2つの

モードでの運転を行い、それぞれのモードでX線生 成実験を予定しているため、それに合わせてビーム ラインの改造も行う(図4)。ビームラインの主な変 更部分は電子ビームとレーザーの衝突点の下流部で あり、衝突後すぐに偏向電磁石で電子ビームを水平 方向に30度曲げる。これは5MeVの電子ビームでX 線生成を行う場合、エネルギーが低く、この広がり 角が非常に大きい(図5)ので、生成後すぐに電子 ビームと分離し取り出すためである。その後さらに 電子ビームを30度偏向電磁石で曲げ戻し、最後は90 度偏向電磁石で垂直下方へダンプする。2つの30度 偏向電磁石の間にビームプロファイルモニタを設け、 ビームエネルギーやその広がりを測定する。また BPM、ICTも設置し、マルチバンチビームのバンチ 毎のエネルギーをモニタし、ビームローディング補 正の調整に使用する。ビームダンプを下流まで伸ば したのは、ここで発生する2次粒子がX線検出器の バックグラウンド信号になるからと、もう一つはX 線検出器を試験する場所の確保のためである。RF 電子銃単独運転のモードでは加速管は取りはずし、 そこはビーム診断区間として利用する予定である。

2.4 ビーム運転予定

エネルギー5MeVのRF電子銃単独運転モードでは、 新しいRF電子銃の性能試験と軟X線生成を目的と している。最大24usのRFを入射し、最大8000バンチ、 4000nC/train(0.5nC/bunch)のマルチバンチビーム生成 を目標とする。エネルギーが低く空間電荷効果の影 響を受けやすいので、バンチ毎の電荷量は少なくし、 かわりにバンチ数を増やすことで、電子ビームの強 度を上げる。これで生成X線数の増大を目指す。こ のときの予想X線数は1.8 x10⁷ photons/train in 20mrad となる^[6]。またRF電子銃の試験として高電荷ビーム として1000バンチ、2000nC/train(2nC/bunch)の運転 も考えている。このモードでの運転はRF電子銃用 のレーザーシステムやKlystron用の電源など準備に 時間がかかるものが多いので段階を経て進めていく。 最初の目標は1000バンチ、500nC/train (0.5nC/bunch) での運転である。

エネルギー50MeVのRF電子銃と加速管を使用し た運転モードでは、バンチ数は同じ100バンチだが、

表1	電子	ビーノ	ムのハ	ドラ ン	メーク	오(計	·算値

Energy	5MeV	50MeV		
Intensity	0.5nC/bunch	2nC/bunch		
Num. of	8000 bunches	100bunches		
Bunch spacing	2.8ns	2.8ns		
Bunch length	10ps	10ps		
Repetition Rate	12.5 train/sec	12.5 train/sec		
Emittance	$5 \pi \text{mm} \cdot \text{mrad}$	$5 \pi \text{mm} \cdot \text{mrad}$		
(σ_x, σ_y) at C.P.	200µm, 60µm	80µm, 40µm		

200nC/train(2nC/bunch)までビーム電流を増大し、硬 X線生成を行うことを目標とする。今度はRF電子 銃と加速管でそれぞれビームローディング補正が可 能となる。初期のRF電子銃開発のときに200nC/train のビーム生成は成功している^[1]ので、問題は加速管 でのローディング補正となる^[5]。

この両方の運転モードで4枚ミラー光共振器を用 いたX線生成実験で、ビーム調整やバックグラウン ド対策などの衝突技術の蓄積およびX線検出器の開 発を行っていく予定である。

3. 今後の予定

今後は、まず現在のビームラインのままRF電子 銃のみを新しいものに交換し、この電子銃の性能試 験を行う。このインストールは8月中旬を予定して いる。この試験の間に、レーザーシステムの1000バ ンチ運転の試験を行う。このビーム試験で現在の RF電子銃との比較を行った後、加速管を取り除き、 5MeV, 1000バンチ、500nC/train (0.5nC/bunch)、パル ス繰り返し3.13Hzの運転を行う。順調にビームが出 たらX線生成実験も行う予定である。その後、新し いビームラインの建設に入り、今年度内の完成を予 定している。

参考文献

- [1] K. Hirano, et al., "High-intensity multi-bunch beam generation by a photo-cathode RF gun", Nucl. Instr. and Meth. A560, pp233-239 (2006).
- [2] S. Liu, et al., "Beam loading compensation for acceleration of multi-bunch electron beam train", Nucl. Instr. and Meth. A584, pp1-8 (2008).
- [3] M. Fukuda, et al., "Present status of Laser Undulator Compact X-ray source (LUCX)(3) ", Proc of the 5th Annual Meeting of Particle Accelerator Society of Japan.
- [4] K. Sakaue, et al., "Demonstration of Multi-Pulse X-ray Generation via Laser-Compton Scattering Using Pulsed-Laser super-cavity", Proc of LINAC08, Victoria, British Columbia, Canada (2008).
- [5] A. Deshpande, et al., "Design of a mode separated RF photo cathode gun", Nucl. Instr. and Meth. A600, pp361-366 (2009).
- [6] K. Sakaue, et al., "Laser-Compton x-ray generation using pulsed-laser super-cavity and multi-bunch electron beam", in this meeting.