STATUS REPORT OF NIRS CYCLOTRON FACILYTY(NIRS-930,HM-18)

A. Sugiura^{A)}, M. Kanazawa^{A)}, S. Hojo^{A)}, N. Suzuki^{A)}, T. Honma^{A)}, M. Muramatsu^{A)}, Y. Sakamoto^{A)}

T. Okada^{B)}, T. Kamiya^{B)}, K. Komatsu^{B)}, and K. Noda^{A)}

^{A)} National Institute of Radiological Sciences

4-9-1 Anagawa, Inage, Chiba, Japan

^{B)} Accelerator Engineering Corporation

2-13-1 Konakadai Inage Chiba Japan

Abstract

The cyclotron facility at National Institute of Radiological Science (NIRS) constitutes of AVF-930 cyclotron (Thomson-CSF K_m =110 MeV and K_f =90 MeV), a small cyclotron (Sumitomo-Heavy-Industry HM-18), and nine experimental beam lines.

The AVF-930 has been used for productions of short-lived radio-pharmaceuticals for PET, research of physics, developments of the particle detectors in space and so on.

In this report, we present operational status of the cyclotron facility, and some improvements.

放医研サイクロトロン施設(NIRS-930, HM-18)の現状報告

1. はじめに

放射線医学総合研究所(放医研)のサイクロトロン 施設には、K_i=90の大型サイクロトロン(NIRS-930) と、1994年に放射性薬剤の製造を目的として導入さ れた小型サイクロトロン(HM-18)がある。現在、こ れら2台のサイクロトロン(HM-18)がある。現在、こ れら2台のサイクロトロンは、放射性薬剤の開発研 究を中心とした研究に使われている[1]。これまでに 施設の維持のために様々な改良及び更新を行ってき たが、2008年度は、小型サイクロトロンの制御系及 び電源の更新、大型サイクロトロン用バックアップ イオン源のビームテスト、直線照射コースのビーム 輸送系の改良を行った。ここでは、2008年度におけ るサイクロトロン施設の利用状況と、サイクロトロ ン施設で行なった改良について報告する。

2. 大型サイクロトロンの利用状況

2008年度の大型サイクロトロンの分野別運転時間 を図1に、粒子・エネルギー別運転時間を表1に示 す。大型サイクロトロンの利用時間は、全体の約 1/2を放射線薬剤の製造が占めている。この放射性 薬剤の製造では放射性薬剤自体の開発研究や、それ を使った臨床研究及び脳機能研究に、P18 MeVや P30 MeV、H₂⁺28 MeV等が利用されている[2]。H₂⁺28 MeVはターゲット直前で解離させP14 MeVで利用し ている。また、利用時間全体の1/4を占める物理実 験では、個人被ばく線量計や衛星搭載用の放射線測 定装置の開発[3]に主にP70 MeV等が利用され、炭素 イオンが水に衝突することによって発生する二次電 子の研究には炭素(C)72 MeVが利用された[4]。また、 外部機関への有料ビーム提供も行われ、衛星搭載用 機器等に対する耐放射線試験にP70 MeVが利用され た。残りの1/4を占める調整運転では、放射性薬剤 の製造用に使われる低エネルギーのビーム輸送効率 の向上や、¹³C⁵⁺143 MeV, O⁵⁺128 MeV, O⁶⁺170 MeV 等の新規ビーム加速調整が行われた。

図1. 大型サイクロトロンの分野別運転時間

表1. 大型サイクロトロンの粒子・エネルギー別運転時間											
陽	子 (P) 重水素 (D)		水 素 分 子 (H ₂ *)		ヘリウム 3(³ He ² *)						
エネルギー [MeV]	運転時間[時間]	エネルギー [MeV]	運転時間[時間]	エネルギー [MeV]	運転時間[時間]	エネルギー [MeV]	運転時間[時間]				
80	46.8	30	15.7	36	14.0	135	28.0				
70	124. 7	12	15.3	28	299.8	105	4.0				
50	22. 0			24	12.5	75	13.5				
40	29.4										
35	7.0										
30	244.6		計 31.0		計 326.3	1	計 45.5				
25	12.5	アルファ粒子(α)		炭	素 (C)	酸素(160)					
20	11.5	100	9.5	144	16.0	(6価)					
18	370.8	40	6.0	72	111.3	170	7.5				
16	9.7	24	21.0	(¹³ C)		(5価)					
14	96.9			143	13.0	160	59.2				
12	50.8					128	3.5				
	計 1026.6		計 36.5		計 140.3		計 70.2				
						時間[時間	引] 1676.3				

3. 小型サイクロトロンの利用状況

小型サイクロトロン(HM-18)は、放射性薬剤の製 造専用に、P18 MeVとD9 MeVのみの加速を行なっ ている。小型サイクロトロンの運転時間を図2に示 す。全体の84.8%が¹¹C,¹³N,¹⁸F等の製造に利用される P18 MeVのビーム提供に、また、6.8%が¹⁵Oの製造 に利用されるD9 MeVのビーム提供に使われた。残 りの8.4%は後で述べる更新した制御系及び電源での ビーム確認等の運転に使われた。

図2 小型サイクロトロンの運転時間

4. ビーム停止事例

表2に大型サイクロトロンと小型サイクロトロン のビーム停止事例を示す。復旧するまでに30分以上 のビーム停止が起きた場合の事例を挙げている。 ビーム停止回数及び総ビーム停止時間は、大型サイ クロトロンで3回、計5時間50分、小型サイクロトロ ンで6回、計8時間25分だった。いずれの停止事例も、 予備品の交換などにより当日中に復旧でき、最大で も3時間のビーム停止にとどめることができている。

日付	停止	事例	누메	商田	ビーム供給停止時間				
	装置	1/140	7071	2512	大型	小型			
2008. 4.15	大型	AVF930用CH2側RF電源	ヒューマンエラー	別系統と表示されていたブ レーカーをOFF	1時間30分	-			
2008. 7. 4	大型	四重極電磁石電源故障	ハードウェア故障	電源故障	1時間	-			
2008. 7. 11	大型	ECRイオン源のRFアンブ故障	ハードウェア故障	RFアンブ故障	2時間40分	-			
2008. 5.11	小型	RFコントロールグリッド電源用冷 却ファン故障	ハードウェア故障	コントロールグリッド電源内部 のファン故障	-	1時間			
2008. 6. 20	小型	イオン源カソードショート	ハードウェア故障	原因不明 イオン源交換に より復帰	-	2時間50分			
2008. 7. 9	小型	直結ターゲット流量計漏水	ハードウェア故障	流量計より漏水	40分	40分			
2008. 8. 7	小型	四極電磁石QR'、ON信号表示不良	ハードウェア故障	リレーの接点不良	-	30分			
2008. 9. 26	小型	イオン源カソードショート	ハードウェア故障	カソードショートによりアークが 立たなかった	-	1時間25分			
2008. 9. 29	小型	D9MeVビーム提供中止	ヒューマンエラー	大気解放後、真空度が十分に 回復しなかった	-	2時間			
『ールは影響なし 『*ルは同日別トラブル/7ビー									

表2. ビーム停止事例

ム供給停止中

5. 小型サイクロトロンの制御系及び電源 の更新

小型サイクロトロンは、1994年に設置されて以 来、15年以上が経ち、電源内部の高電圧部や電気的 接点部などの経年劣化が進み、これを原因としたト ラブルが増えてきていた。また制御系では、電源の 制御をPC9801計算機で行なっていたが、この計算 機の互換機はすでに入手不可能であり、メンテナン スが困難になってきていた。さらに、計算機と各電 源間のインターフェイスとして使われていた、住友 重機械工業のオリジナル規格であるUDC(Universal Device Controller)も製造中止になっていた。そのた め、制御系と電源の更新を行った。

図3に制御系及び電源の新旧システムのブロック 図を示す。電源を制御する計算機はAT互換機へ更 新された。OSはそれに対応してWindows-XPに更新 され、Windows-VISTAにも対応可能なプログラムに なっている。また、計算機と電源間のインター フェースには、一般的なPLC (Programmable Logic Controller)が使われている。そのため、制御部はモ ジュール化されたPLCを用いることにより、19イン チラック1台分に小型化されている。さらに、各直 流電源もシリーズレギュレータ方式の電源から、ス イッチング方式の電源になり小型化された。この結 果旧制御盤を設置していた副操作室に、制御盤及び 電源ともに設置する事ができた。

しかしながら、副操作室に電源を移動したことに より、熱源が副操作室に集中した。これにより小型 サイクロトロンを運転すると、電源の排熱を処理す ることができずに室温が上昇してしまう。そのため、 副操作室の冷房能力の増強を予定している。

図3 制御系及び電源の新旧システムブロック図

6. 直線照射コース(C-4コース)における ビーム輸送系の改良

直線照射室のC-4コースは放射性薬剤の製造専用に 使用されていて、金属ターゲットへ照射し⁶²Cuや ⁶⁴Cu等を製造することができるコースとなってい る。このC-4コースにおいて、ターゲットと最後の 90度偏向電磁石の間で、ビームの位置や形状を調整 できるビーム輸送系の要素は、垂直方向のステアリ ング電磁石と四極電磁石2台のみのため、ターゲッ トでのビーム位置調整でビームロスが起こる等、調 整が困難であった。最近、このコースの利用頻度が 高くなったことからビーム調整の簡便化を図るた め、四極電磁石1台を追加し、さらに水平・垂直ス テアリング電磁石を四極電磁石の下流に追加した (図4)。また、放射化していたステンレス製のダク トを減衰の早いアルミ製のダクトへ変更した。この ダクトの形状を四極電磁石内側の形状に合わせて円 形から四角ダクトへ変更してビームのアクセプタン スを広げた。さらに、C-4コース下流のビーム シャッターを板状のものから、ビームカレントの測 定精度を上げるため2次電子の影響を受けにくい カップ型に変更した。このカップ型ビームシャッ ターは、放射化低減も狙ってカップ底面にグラファ イトを埋め込んだ構造にした。

図4. 直線照射コース(C-4コース)

7. 大型サイクロトロン用バックアップイ オン源の導入

大型サイクロトロンでは、ECRイオン源を使って いるが、このECRイオン源にトラブルが起き運用不 能になった場合のために、バックアップイオン源の 開発を行っている。2008年度における大型サイクロ トロンの運転時間では陽子の利用が全体の80%を占 めている(表1)。そこで、開発しているイオン源で は陽子のみを目標とした。この場合は、比較的電離 エネルギーが小さいため、直流アーク放電のイオン 源で発生させることができる可能性があり、ECRイ オン源で必要なマイクロ波源やマイクロ波回路は不 要となる。この目的のために、HIMACで以前試作 して、その後使われなくなっていた2.45GHzのECR イオン源を、PIG型イオン源に改造した。改造後、 テストベンチでのビーム試験を行い、PとH₂⁺を合わ せて240 μAのビーム電流を確認した。そこで、大型 サイクロトロンへ設置して、ビーム試験を行なっ た。その結果、H₂⁺を28 MeVで取り出した時、サイ クロトロン入射位置で15 µAであった。イオン源出 口から、サイクロトロン入射位置まで到達するビー ム量が非常に少なく提供に必要なビーム量に満たな かった。イオン源の出口から、90度偏向電磁石を真 直ぐに通り抜ける時のビームロスが多く、サイクロ トロンの入口までの集束要素が不足していると考え

られる。今後、このイオン源の永久磁石を強化する など、ビーム量を増強するための改造を行い、実際 の運転で利用出来るようにしていく予定である。

図5. バックアップイオン源 (コンパクトマイクロRFイオン源改造PIG型イオン源)

8. まとめ

2008年度は大型サイクロトロンを約1700時間、小型サイクロトロンを約1400時間運転し、放射性薬剤の製造及びその他の実験に利用された。二つの装置とも故障などによりビームを停止しているが、最大のケースでも3時間のビーム停止にとどめることができ、良好なビーム提供を実現できている。

2008年度も施設の維持のために様々な改良や更新 を行った。大型サイクロトロンでは、直線照射コー スにおけるビーム輸送系の改良を行ない、ビーム調 整を容易にした。また、バックアップイオン源を導 入するためのビーム試験を行なった。今後実際の運 転で利用できるように開発して行く予定である。そ して、小型サイクロトロンでは、制御系及び電源の 更新を行った。冬の定期メンテナンス期間中に行な うことができ、新年度から新システムでビーム提供 を行っている。

参考文献

- [1] 平成20年度 サイクロトロン利用報告書 NIRS-M-224. H21.7.
- [2] 鈴木和年., 放射線医学総合研究所におけるRI製 造, Isotope News, P8-11, 2008年04月
- [3] Hisashi Kitamura, et.al., "Future ICCHIBAN Experiments Using Proton Beams", 13th WRMISS, Sept. 9th, 2008, Krakow, Poland
- [4] C. Dal Cappello, et.al., Theoretical and experimental investigations of electron emission in C^{6+} + H₂O collisions, Nuclear Instruments and Methods in Physics Research B 267, 781–790 (2009)