EXPERIMENTAL STUDY ON A NOVEL FAST MAGNETIC KICKER SYSTEM: THE BRIDGED-T NETWORK LUMPED KICKER

Toshiyuki Oki^{1,A)}

^{A)} Research Facility Center for Science and Technology, University of Tsukuba Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577

Abstract

This study proposes a novel fast magnetic kicker system: the bridged-T network lumped kicker. The rise time is comparable with that of a transmission line kicker, while the input impedance can be matched with the characteristic impedance of the pulse power supply. A lumped magnet core and matching elements form the bridged-T network, so that the complex structure associated with a transmission line magnet is no longer required. A demonstration of the proposed scheme is performed and the results are as anticipated.

完全整合型キッカー電磁石システムの開発研究

1. はじめに

シンクロトロンやFFAGに代表される円形加速器 の用途はますます広がっており、加速器の大幅な小 型化が望まれている。例えば、ミューオンビーム蓄 積・冷却リングとしての利用、重粒子線がん治療器 としての医療利用、小型放射光発生装置としての利 用等が検討されており、ミューオンが短寿命である ことや、治療施設への設置スペースが限られている ことから、従来の巨大円形加速器をそのまま適用す ることができず、円形加速器の小型化が近年の加速 器研究における一大潮流となっている^[1,2]。

円形加速器を小型化するためには、偏向電磁石の 磁場強度を高めてリング曲率半径を小さくし、高加 速勾配の空洞を適用して直線部の長さを短くする必 要があり、それぞれの要素開発が進められ、一定の 成果を挙げている。しかしながら、入出射装置であ るキッカー電磁石システムに対する要請は非常に厳 しく、従来の方式を用いる限りそれを克服すること は困難であり、円形加速器小型化のボトルネックと なっている。

一般に、キッカー電磁石はビームを加速器リング に入射、あるいは、取り出すために用いられ、パル ス的に励磁される。その励磁立ち上がり時間は周回 ビームバンチの時間構造で定まり、例えばビームを リングから取り出す場合には、あるビームバンチが キッカー電磁石を通過した直後にキッカー電磁石の 励磁を開始し、次のビームバンチがキッカー電磁石 にやってくる前までに、その励磁を完了し、所定の 磁場を発生できるようにしておく必要がある。

このためキッカー電磁石には、次のような性能が 要求される:1) バンチーバンチ間に相当する、数 十から数百nsの高速な励磁立ち上がりが実現される こと。2) そうした速いパルス励磁にもかかわらず、 パルス波形のひずみや不整磁場、破壊故障などを引 き起こす反射波が生じないように、負荷である電磁 石とパルス電源との間で、インピーダンスの整合が 実現されていること。3) 設置されるリング直線部 の長さには制限があるので、それに収まること。

大型の円形加速器では、これらの要請を満たすた めに、キッカー電磁石は分布定数型^[3, 4]の構造と なっている。すなわち、ビーム軸方向に沿って磁性 体コアを複数個に分割し、それらを電極板で挟み込 む構造にすることによって伝送線回路を形成し、 ビームを偏向する機能と、パルス励磁による反射を 免れるためのインピーダンス整合機能とを実現して いる。

しかし、こうした従来の方式を小型円形加速器に 適用することは難しい。なぜなら、分布定数型では、 次のように、その複雑な構造に起因する問題がある からである。まず、電極板には典型的に数十kVの 高電圧励磁パルスが印加されるが、その電極板で磁 性体を挟む複雑な構造なので、電極板間の放電が懸 念される。そうした放電を免れるために、電磁石全 体を真空容器に納める必要がある。その真空容器に は高度に設計されたパルス導入コネクターが必要と なる。フェライトなどの磁性体で構成される電磁石 コアからはアウトガスが生じ、ビームの軌道に悪影 響を及ぼす。整合を取るために、電磁石コアをビー ム軸方向に分割して電極板でサンドイッチしてゆく といった複雑な構造としたわけだが、分割できる個 数は電極板間の放電限界距離で制限されており、有 限の遮断周波数が存在する。特に直線部が短い小型 円形加速器では、十分な個数に分割できず、遮断周 波数以上の周波数帯(典型的には数MHz以上)では インピーダンス整合が原理的に実現できず、反射に よって励磁パルス波形がひずみ、あるいは機器破壊 が起こりうる。

こうした分布定数型キッカー電磁石の他には、単 純な磁性体コアとコイルから構成される集中定数型

¹ E-mail: oki@tac.tsukuba.ac.jp

の電磁石に、終端抵抗を取り付け、あるいは静電容 量と組み合わせ、一応の整合を持たせようとしたも のもある。しかしながらこうした方法では、高速な 応答が期待できないばかりか、整合がまったく不十 分であるため、強い反射が励磁パルス後方に表れる。 特に、多数回円形加速器にビームを入射するための 入射用キッカー電磁石システムには、すでに周回し ているビームバンチの軌道を変調してしまうので、 こうした方法は不適切である。

そこで、これらの問題点を同時にすべて克服する ことのできる新しい高速励磁方式として、「完全整 合型キッカー電磁石システム」^[5, 6]を提案している。

2. 完全整合型キッカー電磁石システム

完全整合型キッカー電磁石システムでは、従来の 分布定数型で用いられるような複雑な構造によって インピーダンス整合機能を持たせるのではなく、集 中定数電磁石に整合要素を組み合わせ、T架橋型四 端子回路網の構成とする。

図1に示すT架橋型四端子回路網は真空管増幅器の 入力整合回路などとして知られており^[7]、その入力 インピーダンス (z_{in}) は、 $z_s = z_k / 4, z_p = 2R^2 / z_k$ (完全整合条件)のとき、 $z_{in} = R$ となり、原理的 に完全なインピーダンス整合を実現できる。

すなわち、 z_k をインダクタンス Lのキッカー電磁石、Rを終端抵抗とすると、静電容量が $L / (2 R^2)$ のコンデンサーを z_p とし、インダクタンスが L / 4のコイルを z_s とし、それぞれ接続すれば、 完全整合が実現できる。

この回路構成の場合には、低域通過網型の周波数 特性となる。また入力パルス電圧に対する応答とし て、キッカー電磁石励磁電流の立ち上がり時間は、 およそ1.21 L / R で表せ、分布定数型と同程度の高 速励磁特性が期待できる。

図1:T架橋型四端子回路網(上)と、 z_k をインダ クタンス Lのキッカー電磁石とした場合(下)。

図2:実証試験でのセットアップ(上)とパラメー ター表(下)。表中の数値は設計値で、()内は測定 値、[]内は推定値。

3. 実証試験

モデルシステムを構築して実証試験を行った。試験は、典型的なキッカー電磁石と同程度の口径、長さ、インダクタンスを持つフェライト電磁石コアを、 T架橋型四端子回路網の構成にして行った。

3.1 セットアップ

実証試験のセットアップは、図2のとおりである。

負荷には、典型的なキッカー電磁石と同程度のイン ダクタンスL = 1.4uHを持つフェライト電磁石コア (口径140 mm (W)×55 mm (H)、長さ400 mm) を利 用し、これにセラミックコンデンサ(1.67 nF)と空 芯インダクタ(0.36 µH)および終端抵抗 (19.4)Ω)を組み合わせてT架橋型四端子回路網の構成と した。このように、整合要素はデザインと若干異 なっているが、今回は微調整を行わなかった。励磁 パルス電源は、波高10 kV、幅1.2 us程度のパルスを 出力した。その出力パルスの立ち上がり時間は、あ らかじめ負荷に抵抗を使用して測定したところ、52 nsであった。電磁石入力部の入力電圧と入力電流を 測定するために、1000:1高圧プローブ (IWATSU HV-30) と電流トランス (PEARSON model 110) を それぞれ使用した。また磁場の測定には、サーチコ イル(長さ600 mm、幅10 mm)を用い、その出力電 圧を時間積分して積分磁場を得た。入力インピーダ ンスの測定には、ADVANTEST R3765CGネット ワークアナライザを用いた。

3.2 試験結果

パルス応答試験の結果とネットワークアナライザ で測定した入力インピーダンスをそれぞれ図3、図4 に示す。立ち上がり時間は、133 nsと期待通り高速 であった。パルス後方には、浮遊の誘導成分を原因 とする若干の反射が見られるものの、十分小さく なっている。入力インピーダンスの周波数依存度は 十分小さく、よく整合されていることがわかる。

4. まとめ

シンクロトロンを始めとする円形加速器にビーム を入出射するためには、高速でパルス的に励磁され るキッカー電磁石が用いられる。このキッカー電磁 石には、高速励磁応答特性に加えて、パルス電源と の間で反射が起きないようにインピーダンス整合特 性が要求される。このため、複雑な構造を持つ分布 定数型が従来から適用されてきたが、その構造に由 来する多くの問題があった。

そこで本研究では、T架橋四端子回路網に集中定 数型のキッカー電磁石を組み込めば、なんら複雑な 構造なしに、原理的に完全なインピーダンス整合を 実現しながら、分布定数型と同程度の高速励磁が期 待できると考え、実証試験を行い、期待通りの性能 が得られた。

この方式では、放電故障の原因となる電極板を必 要としない単純な構造であり、低コストで設計でき、 セラミックスダクトと組み合わせて大気中駆動も可 能であるといった特徴を有するため、円形加速器を 小型化するための将来技術のひとつとなる、ブレー クスルー技術となりうることが期待できる。また、 反射による絶縁破壊などの放射線作業を伴う故障を 極力低減できるので、高い運転効率が期待される素 粒子原子核実験用の大型加速器や放射光施設にこれ を適用することで、信頼性の向上が期待できる。

図3:パルス応答試験の結果。上から入力電圧、入 力電流、サーチコイル出力電圧、および、積分磁場。 点線は計算値。

図4:入力インピーダンス測定結果。

謝辞

実証試験に御協力頂いた中村英滋研究機関講師、 江川一美准教授、村杉茂技師補、白壁義久技師と、 多くの助言頂いた川久保忠通教授、入江吉郎教授に 感謝致します。本研究は科研費(若手研究B 19740142)および(若手研究B 21740159)の助成を 受けたものである。

参考文献

- [1]「加速器技術に関する先端動向調査」、NISTEP Report No.67、平成13年6月、文部科学省科学技術政策研究所.
- [2] 文部科学省 先進小型加速器開発事業 < http://research.kek.jp/group/TTPS/ >
- [3] G.K. O'Neill and E.J. Woods, Phys. Rev. 115 (1959), p. 659.
- [4] D. Fiander, K.-D. Metzmacher, P. Pearce, Kickers and septa at the PS complex, CERN, CERN/PS 88-58(RF), 1988.
- [5] T. Oki, "A New Concept of a Fast Magnetic Kicker System: Bridged-T Network Lumped Kicker," The 23rd Particle Accelerator Conference (PAC09), Vancouver, Canada, May 4-9, 2009.
- [6] T. Oki, Nucl. Instr. and Meth. A 607 (2009), p. 489. < http://dx.doi.org/10.1016/j.nima.2009.05.189 >
- [7] O.J. Zobel, Bell Syst. Tech. J. 2 (1923), p. 1.