Design policy of the Personnel Protection System for the IFMIF/EVEDA Accelerator

Toshiyuki Kojima^{1, A)}, Hiroki Takahashi^{1, A)}, Hironao Sakaki^{1, B)}, Sunao Maebara^{1, C)}

¹⁾ Japan Atomic Energy Agency, IFMIF Development Group,

^{A)}2-166 Obuchi Omotedate, Rokkasho-mura, Kamikita-gun, Aomori, 039-3212

^{B)} 8-1-7 Umemidai, Kizugawa city, Kyoto 619-0215

^{C)} 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki, 319-1195

Abstract

The IFMIF/EVEDA prototype accelerator consists of Injector (Output: 100keV), 175MHz RFQ (a 4-vain type; Output: 5MeV), Superconductive Linac (SC HWR-Linac; Output: 9MeV) and the other sub-systems. In the engineering validation, the acceleration with deuteron beam of 125mA will be tested up to 9MeV at the CW mode operation. In this case, the radio-activation for each accelerator components is a critical issues, the development of Personnel Protection System (PPS) with a high reliability is indispensable. For this purpose, the PPS using SIMATIC, which is based on European standard Programmable Logic Controller (PLC) is being developed now.

IFMIF/EVEDA加速器制御系 人員保護システム(PPS)の設計方針

1. はじめに

国際核融合材料照射施設(IFMIF: International Fusion Material Irradiation Facility)に関する工学実 証及び工学設計活動(EVEDA: Engineering Validation and Engineering Design Activity)でのプロ トタイプ加速器は、9MeV/125mAのCW D⁺ビームを 生成する。IFMIF/EVEDA加速器は、入射器 (100keV)、RFQ(5MeV)、初段の超伝導ライナック (9MeV)等のサブシステムから成り、本活動におけ る日本の実施機関であるJAEAは、建屋、制御系、 RFQカプラ等の設計、製作、試験を担当する[1]。

IFMIF/EVEDA加速器は、上述の通り、大電流で あり、加速粒子がD⁺であることから、ビームロス による放射化、熱衝撃が大きな課題である。これ らの課題を十分考慮した加速器制御系の一環とし て、現在検討・設計を進めている人員保護システ ム (Personnel Protection System : PPS)の設計方針 について報告する。

2. PPSの概要

PPS は、加速器の運転状態に応じて、 IFMIF/EVEDA加速器開発試験棟ならびに棟内の放 射線管理区域への人員の入退域を管理して、ビー ム誤射や放射線等の危険(放射線以外にも、RF、 高電圧大電流等の危険因子も考慮)から人員を保 護し、安全を確保するためのシステムである。

IFMIF/EVEDAプロトタイプ加速器は、直線上に 入射器、RFQ、MS(Matching Section)、超伝導ライ ナックが並び、HEBTの途中で20°程偏向してビー ムダンプタンクで終端する全長約40m程のビーム ラインを形成し、IFMIF/EVEDA開発試験棟の加速 器室(Accelerator Vault)内に設置される。

PPSの管理対象となる区域は、加速器室、その南 側に位置する1次系/2次系冷却水熱交換器等が設置 される冷却水ホット機械室(Heat Exchange & Cooling Water Area)、ならびに管理区域からの排 水貯蔵タンクや空調排気ファンが設置される空調 ホット機械室(Nuclear HVAC & Liquid Waste Processing Area)の3区域である。これらの3区 域への入退域は、搬入室(Shipping Area)の遮蔽ス ライドドアおよびホットエリアへの出入扉からの み可能で、いずれのドアも電気錠にて制御室から 遠隔管理される。

図1にIFMIF/EVEDA開発試験棟の構成とPPSの 管理対象区域について示す。

図1 PPSの管理対象区域

3. 設計方針

IFMIF/EVEDAプロトタイプ加速器のPPSは、D⁺ ビームによる加速器室内の装置・機器の放射化、 さらに冷却水や空気の放射化なども考慮して、運 転管理と放射線管理の両面からPPSの機能や操作性、 運用や手順に至るまで吟味しながら設計を進める 必要がある。

現時点では、PPSの設計方針として次の3項目を 柱としている。

- (1) ビーム運転中さらにビーム停止後の冷却期間を考慮した立入制限と管理
- (2) 換気空調設備と協調した立入制限と管理
- (3) 誤操作、誤判定のない安全性と信頼性の確保

(1)は人員の余分な被曝防止のため、加速器運転 中、および運転後の放射線レベルが高い期間につ いて、人員の加速器室入域を禁止する。この冷却 期間については、加速粒子種別やビーム電流、運 転時間等により評価されたものでなければならな い。

(2)は加速器室内の空気の放射化、ならびに超伝 導リニアックの冷却用液体ヘリウムの漏洩を想定 したものである。 IFMIF/EVEDA開発試験棟の加 速器室はビーム運転中は換気停止の負圧維持状態

(厳密には負圧維持のための微少換気を行う)で、 人員が入域する場合には、通常の換気状態に切り 換える。換気停止時の入域禁止など立ち入り区分 に連動協調した空調運転状態を管理する。

(3)はIFMIF/EVEDA加速器のPPSに限ったことで はないが、EUとの協力開発であるプロトタイプ加 速器として柔軟な運用に即したものであると同時 に、安全に関する規格、基準、さらに文化の異な るEU諸国の関係者にも妥当で平易なルール、手順 に基づいたものでなければならない。

これらの設計方針に基づき、開発実績と運用実 績のあるJ-PARCのPPSをひな型とした設計を進め、 IFMIF/EVEDAプロトタイプ加速器の運転形態や特 質を考慮しながら最適なカスタマイズを図ること で合理的なシステムを目指す。

表1にIFMIF/EVEDA加速器におけるPPSの立入 区分と機器の運転制限の基本構想についてまとめ る。

4. システム構成

IFMIF/EVEDAプロトタイプ加速器のPPS構成を 図2に示す。

PPSは、制御室(Control Room)に設置されるPPS監 視操作盤、電源ラック室(Electric Power Bay Area)の 中央制御I/F盤内に設置される論理判定用 PLC(Programmable Logic Controller)と信号インター フェース用の端子台(TB)、そして搬入室(Shipping Area)に設置されパーソナルキーと入退出扉を管理 制御するローカルPLCの3つの部分から構成される。

制御室のPPS監視操作盤にはインターフォン、カ メラサーバーとモニターなどが設置され、入退出 扉近傍との通話や映像によって状況確認をしなが らPPS操作を可能とする。

また、PPSの中核機器となる論理判定用のPLCは 2重化構成(A系/B系)とし、各装置や機器とのイン ターロックに関わる信号はPLC毎に独立したハード ワイヤードによる信号経路で取合うものとしてい る。

5. 開発状況

IFMIF/EVEDAプロトタイプ加速器の装置・機器の大半は、EU側で設計製作されて搬入される。現在、各装置、機器との間で取合うPPS信号リストをベースに取合い調整を行っている。

取合い信号は、入出力ともデジタル(2値)信 号のみとし、メカニカルリレー無電圧接点での取 合いとしている。

また、PLCはEUでの標準汎用品としてシーメン ス社製のSIMATICを採用し、開発環境を統一する などメンテナンス性を考慮、開発環境や開発手法 の調査等を行っている。

PPS管理区域への 立入区分	入退域の制限	機器の運転制限	備考
立入許可 Authorized Access	運転責任者の監視下になく(制御室 からの遠隔操作によらず)、予め認 可された者が放射線管理上の所定 の入退出手順により加速器室に入 退出できる。	管理区域内の機器は、停止または安全上配慮された運 転状態にあって、放射線、囲いのないRFや高電圧大電流 等の危険因子が存在しない。 換気空調設備は、換気状態にある。	収束コイルや偏向電磁石等の 通電(励磁)は可。ただし、PPS 発報時には遮断される。
立入制限 Controlled Access	運転責任者の監視下で、制御室か らの遠隔操作に基づいてのみ加速 器室への入退出が許可される。	管理区域内の一部の機器に対して運転制限が解除され る。 入射装置の単独運転、加速器空洞へのRF印加(エージン グ)など。ただし、ビーム遮断機器は引抜くことはできな い。 原則として、換気空調設備は、負圧維持状態にある。	RFエージング中は、入室できな い(させない)
立入禁止 No Access	ビーム運転可能な準備が整った状態、またはビーム運転中やビーム運 転直後等で放射線レベルが高く、加速器室への一切の立入が禁止される。	管理区域内の全ての機器に対して運転制限が解除され る。 換気空調設備は負圧維持状態にある。 ビーム運転停止後の線量低減のための冷却期間も本区 分に含まれる。	入射装置単独運転はD ⁺ 運転を 考慮し立入禁止の区分でのみ 可とする。

表1 IFMIF/EVEDA PPSの立入区分と機器の運転制限

5.まとめ

IFMIF/EVEDAプロトタイプ加速器は、 D^+ 9MeV 125mAの CW運転が計画されており、放射化を考慮したPPSの設計が必要となる。

開発実績、運用経験で先行するJ-PARCのPPSを ベースにしつつ、IFMIF/EVEDA加速器の特質や運 転シナリオを加味して最適なカスタマイズを図る。

また、プロトタイプ加速器としての多様な運転 やコミッショニング時に対応できる柔軟性と確実 で堅牢な安全性の両立を目指す。

参考文献

- K.Shinto et al., "Progress of the Accelerator in Broader Approach IFMIF/EVEDA Project", Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan, Hiroshima, Japan, August 2008
- [2] H.Takahashi et al., "Overview of the Control System for the IFMIF/EVEDA Accelerator", Proceedings of the 6th Annual Meeting of Particle Accelerator Society of Japan, Tokai, Japan, August 2009

Note) The Equipment and the Wiring described in a dotted line are prepared for in EU side

図2 PPSのシステム構成