DEVELOPMENT OF RASTER SCANNING SYSTEM AT NIRS-HIMAC

Takuji Furukawa^{1,A)}, Taku Inaniwa^{A)}, Shinji Sato^{A)}, Naoya Saotome^{A)}, Toshiyuki Shirai^{A)}, Yuka Takei^{A)},

Eri Takeshita^{A)}, Takeshi Himukai^{A)}, Ken Katagiri^{A)}, Shigekazu Fukuda^{A)}, Ai Nagano^{A)},

Shinichiro Mori^{A)}, Shinichi Minohara^{A)} and Koji Noda^{A)}

Yasushi Iseki ^{B)}, Katsushi Hanawa ^{B)}, Nobukazu Kakutani ^{B)}, Choji Yamazaki ^{B)}, Yoshiharu Kanai ^{B)}

^{A)} National Institute of Radiological Sciences

4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555

^{B)} Toshiba Corp.

2-62-8-507 Higashi-Ikebukuro, Toshima-ku, Tokyo, 170-0013

Abstract

A new treatment facility project, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy in NIRS. This new treatment facility will be equipped with a 3D irradiation system with pencil beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To accomplish practical moving target irradiation and to fix the final design, a prototype of the scanning irradiation system was constructed and installed into existing HIMAC experiment course. The system and the status of the beam test are described.

放医研におけるスキャニング照射装置開発の現状

1. はじめに

平成18年度より放医研では、HIMACからのビー ムラインを延長し、スキャニング照射、および回転 ガントリーを備える新治療室を建設する計画を進め ている^[1,2]。ここでは、呼吸性移動臓器に対するア プローチとして、呼吸同期照射と高速な多数回ス キャニングを組み合わせることにより、線量分布の 悪化を防ごうと考えている。この高速スキャニング 照射装置を実証し、また装置の完成度を高めていく 必要から、新治療棟一建屋の建設(平成22年竣工予 定)に先行して、スキャニング照射装置の開発試作 機を製作した。平成20年12月より、これをHIMAC 物理汎用照射室に設置し、ビーム試験をスタートし た。これらの進捗状況を紹介する。

2. スキャニング試験システムの製作

2.1 装置概要

スキャニング照射装置―開発試作機(以後、試験 システム)の設計は、計画のスタートした平成18年 度から平成20年度の間に行った。初期の概念設計の 結果から、"高速なスキャニングにより照射時間を 延ばさずにリスキャニングの回数を確保し、呼吸性 移動臓器に適応できるようにする"ということを設 計の指針と定め^[3]、設計製作を行った。このため、 本試験システムの製作において、重要なポイントは、 1)高速スキャニング電磁石・電源、2)高速なス キャニング制御、および3)モニターシステムであ

¹ E-mail: t_furu@nirs.go.jp

る。また、照射法については、スポット移動中に ビームOFFしない、ハイブリッドラスタースキャニ ング法^[4]を採用することとした。これは高速化に際 し、HIMACシンクロトロンのビーム特性を考慮し、 最も相性がよいと考えられたためである。また、こ の試験システムの製作と平行して、高速化のために、 1)高速化を考慮に入れた治療計画の開発^[5]、およ び2)シンクロトロン可変周期運転化の開発^[6]が行 われてきた。これらを組み合わせることにより、従 来の約100倍の速度での照射野形成を実現する。

平成20年12月に完成した試験システムの写真を図 1に示す。ポート長は約9mであり、空気やモニ ターによる散乱を防ぐため、アイソセンター上流 1.3mの位置まで真空としている。最上流にスキャニ ング電磁石、下流にはモニター、ミニピーク用リッ ジフィルター、レンジシフターと配置される。

図1:完成したスキャニング試験システム

2.2 高速スキャニング電磁石・電源

スキャニング電磁石については、スキャン速度を 従来の約10倍程度となる(vx, vy)=(100, 50) mm/msを 達成できるように電磁石を製作した。主な仕様を表 1にまとめる。高速な磁場変化を繰り返すため電磁 石の温度上昇が懸念されていたが、定格での長時間 交流通電時においても磁極温度は50℃程度であり、 問題がないことを確認した(図2参照)。

表 1	·	スキャ	マニング	グ電磁石	・電源	主要諸元
-1X I		< 1				

	Unit	SMx	SMy
偏向角	mrad	±18	±21
磁極間隙	mm	40	82
有効長	mm	393.6	681.2
ポール長	mm	360	618
ポール幅	mm	90	140
最大磁場	Т	0.286	0.190
コイルターン数	turns/pole	12	15
抵抗	mΩ	5.6	10.3
インダクタンス	mH	0.94	2.02
重量	kg	290	730
最大電流	А	±410	± 440
最大電圧	V	420	460
スキャン速度	mm/ms	> 100	> 50

図2:スキャニング電磁石(左図)、および連続通 電試験時の温度測定結果(右図)。

図3:電源試験の様子。上から電流指令値、測定電 流値、および電流偏差を表す。時間スケールは200 μs/divisionである。

電磁石電源は、上記スキャン速度を実現するための フォーシング電圧用IGBT電源部、および電流制御 用のFET電源部で構成されている。本電源において は、高速なIGBT制御が非常に重要な役割を果たす。 オーバー/アンダーシュートを抑制するために、ス イッチングの時間精度として約300ns程度が要求さ れる。図3に試験結果の一例を示すが、オーバー シュートが0.5A以下に抑えられていることがわかる。 この0.5AのずれはFET電源部によって数10µs程度で 補正することが可能である。

2.3 ビームモニター

スキャニング照射装置においてビームモニターは 最も重要な要素の一つである。各スポットの照射線 量を計測し、スキャニング照射を実現するために、 正、および副モニターの二台の平行平板電離箱を備 えている。出力の位置依存性、および再結合などの チェックを行い、使用している。また、スポット毎 のビーム位置を測定、および監視するために、水 平・垂直、計240チャンネルからなる多線式比例計 数管(MWPC)を用いる。これらのビームモニター の有効領域は240×240mm²である。

2.4 リッジフィルターとレンジシフター

上記モニターの下流には、ミニピーク生成用の リッジフィルターとレンジを変化させるためのレン ジシフターが配置されている。リッジフィルターは、 160本のバーリッジ(1.5mmピッチ)から構成され、 ガウシアン形状で3mm幅(1sigma)のミニピークを 形成する。また、リッジフィルターからアイソセン ターまでの距離は約1mである。一方、散乱の影響 を小さくするため、レンジシフターは最下流(アイ ソセンター上流0.9mから0.6mの間)に設置されてい る。バイナリー方式を採用しており、厚さ0.2 ~ 102.4 mmの10枚のPMMA板で構成される。これらの 有効領域はビームモニターと同一にしている。

2.5 制御装置

スキャニング照射の制御装置には、大容量の照射 パラメータおよび照射ログを高速、かつ正確に処理 し、照射野形成を管理することが要求される。正モ ニター回路からの信号を元に照射野形成を司る部分 には、高速性、信頼性の高さからFPGAを採用し、 状態監視やレンジシフター駆動などの高速でないms オーダの制御部にはPLCを採用している。

3. ビーム試験

平成20年12月から、スキャニング試験装置のコ ミッショニングを開始した。コミッショニングでは、 まず初めにスポット径の調整、電磁石電流値とス ポット位置の校正、およびモニターや制御系の正常 動作確認などの初期試験を行った。図4左に、電磁 石電流とスポット位置のキャリブレーションに用い た測定結果を示す。測定には、蛍光スクリーン (ZnS:Ag)とCCDカメラによる測定システム^[7]を用

いた。また、各スポットを固定カウントで照射する ことにより実現する二次元均一照射での平坦度 チェックにもこのシステムを用いている(図4右)。 この例では±100mmの広範囲にわたり平坦度が確保 されていることがわかる。また、図5には二次元強 度変調照射の一例を示す。この例ではHIMACの鳥 瞰図をビーム照射により描いているが、所定の強度 変調が行えていることがわかる。

図4:スポット位置キャリブレーション(左図)、 および二次元均一照射の測定結果(右図)

一方、三次元照射を行うためには、ペンシルビームのレスポンスを正確に押さえ、これを治療計画における線量計算に反映させることが必要である^[8]。このために我々は、ペンシルビームの線量応答を効率よく測定するための測定システムを開発した。この測定システムはシリンダー式の水カラムと測定器により構成される。シリンダー式水カラムは、測定器までの厚みを30mmから380mmまで変化させることが出来る。また、測定器は積分型の平行平板電離箱(全94ch)からなり、縦方向と横方向の線量分布が同時に測定可能な構成になっている。測定結果の一例を図6に示す。この専用の測定器を用いることでビームデータ取得にかかる時間の大幅な削減を実現している。

上述のペンシルビームデータを用い、治療計画を 行い、三次元照射の試験を行った。線量分布の計画 値と測定値の比較を図7に示す。この結果から、計 画通りに照射できているのがわかる。この例では、 物理線量が平坦になるように60×60×80mm³の直方体 ターゲットについて計画、照射を行った。ここでは、 高速な照射のために、平坦なビームの時間構造を仮 定し、スポット間に付与される線量を予測し、治療 計画に組み込んだ^[5]。図7に示した比較により、所 望の強度で、平坦なスピル構造^[9]を実現できている こと、さらに治療計画の信頼性が確認できた。また、 これらの試験は、HIMACシンクロトロンのフラッ トトップ延長^[6]と組み合わせて行われており、非常 に効率よくビーム試験が行われている。

図6:ペンシルビーム測定の一例。左図の測定結果 から右図のようなビームモデルとし、治療計画内で の線量計算に用いる。

図7:三次元照射の一例。線が治療計画によるもの で、点が測定結果を示している。

4. まとめ

建屋建設に先行して、スキャニング照射装置の開 発試作機を製作し、ビーム試験を行っている。所期 の目標は達成しているといえるが、いくつかのコン ポーネントは改善すべき点があり、今後急ピッチで 進めていく必要がある。

参考文献

- [1] K. Noda, et al., Nucl. Instr. Meth. B 266 (2008) 2182-2185.
- [2] K. Noda et al, Proc. of EPAC 2008, 1818.
- [3] T. Furukawa et al, Med. Phys. 34 (2007) 1085.
- [4] Th. Haberer et al, Nucl. Instr. Meth. A 330 (1993) 296.
- [5] T. Inaniwa et al, Med. Phys. 34 (2007) 3302.
- [6] Y. Iwata et al, Proc. of EPAC 2008, 1800.
- [7] N. Saotome et al, Proc. of EPAC 2008, 1830.
- [8] T. Inaniwa et al., Nucl. Instr. Meth. B 266 (2008) 2194-2198.
- [9] S. Sato et al., in these proceedings.