THE PRESENT STATUS OF VACUUM SYSTEM OF J-PARC MAIN RING AND 3-50 BEAM TRANSPORT

Masahiko Uota¹, Yoichiro Hori, Masayuki Shimamoto, Yoshihiro Sato, Yasuhiro Takeda, Tomio Kubo, Yoshio Saito KEK

Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan

Abstract

The vacuum system of J-PARC Main Ring synchrotron and 3-50 beam transport line were successfully developed in April 2008 and still progress synchronously with the accelerator study phases such as the injection, the acceleration, the fast extraction to the abort line, the slow extraction to the hadron laboratory, fast extraction to the neutrino line, and, also the remodeling of coil wiring of sextupole magnets in this summer. In the simple ducts of the arc section, a vacuum pressure is going down to about 2e-7 Pa so that the pumps are expected to be long life, otherwise, the vacuum chamber of in-vacuum magnets such as the injection or fast-extraction septum magnets with lamination cores keeps high pressure of over 1e-5 Pa by outgassing from huge surface area. The pumps at that chambers will die in a few years.

J-PARC主リング及び3-50BTの真空系の現状

1. はじめに

大強度陽子加速器J-PARCの最終段加速器である主 リングシンクロトロン(MR)の真空系は、RCSからの 230mビーム輸送路(3-50BT)、周長1567.5mのMR、4 方向の取り出しライン(18m入射シングルバンチビー ムダンプ、遅い取り出しラインの境界ゲートバルブ (GV)まで、速い取り出しの75mアボートダンプライ ン、ニュートリノラインの境界GVまで)で構成され ている。このうちMRシンクロトロンは3つの120度 アーク部A, B, C(ビーム路長はそれぞれ406.4m)と3つ の直線部A, B, C(それぞれ116.1m)から構成され、直 線部はそれぞれ

A:入射、コリメータ、入射ビームダンプ

B: 遅い取り出し

・C:加速、速い取り出し(v及びダンプ) のための機器が並ぶ。遅い取り出しに係る磁石は アーク部にも配置されている。真空系は2006年から 一部区間で排気が開始され、2008年4月には入射 ビームダンプまで一続きの真空系として一応の完成 をみたが、5月のビーム試験が始まった後現在に至 るまで、シャットダウンの度に機器の設置、増強、 改造、追加のために真空は破られ再排気を繰り返し ており、真空内壁が静かに休まることは一時もない。 その現状を圧力の観点から報告する。

2. 真空系の構成

MRを1つの真空系と看做す時、電磁石内の真空ダクト、各種ビームモニタ、さらにRF加速空洞や真空外に置かれた入出射機器まで含めて、ビーム軌道に

沿った1530m(周長の97.6%相当)分は、細長いパイプ 状の、いわゆる「ビームダクト」形状である。残る 37.5m分のみが、入出射機器で真空内に置かれるも の(入射及び出射キッカー、最終段以外のセプタム) を収納する、巨大な円筒や角型のいわゆる「真空 チェンバー」になっている。

2.1 ビームダクト

ビームダクトは、主に直径約130mmの単純な円ま たは類似の断面を持つ管構造^[1]で、ビーム軌道方向 の単位長さ当たり表面積は約0.4m²/mと小さく、材 質はステンレス鋼やチタンで真空的な性質がよく理 解されており、製造時の表面処理工程を管理し単位 面積あたりのガス放出速度を低く抑えることは容易 であった^{[2][3]}。一方、真空のコンダクタンスはダク ト長に反比例し1mで0.3m³/s程度であり、空間的制約 から数10mごとの磁石と磁石の隙間に排気ポンプを 点在させることにより、ビーム軸方向の圧力はポン プポートを節とする放物線分布となり、数倍~10倍 程度の圧力分布を生じさせることが予想された^[4]。

2.2 チェンバー

次にチェンバーの真空については、時間応答の速 い電磁石の場合、材質にフェライト、電磁鋼板、熔 射セラミック、ポリイミドフィルム等、単純な金属 や合金に比べアウトガスが桁違いに大きいものが使 用されている。さらに数10mm~0.35mm程度の薄板 を積層させる構造のために、総表面積が磁石単体で 10m²/m(キッカーのフェライト)~100-1000m²/m(セ プタムの電磁鋼板)にも及び、単体でビームダクト数

¹ E-mail: masahiko.uota@kek.jp

図1. J-PARC MR真空ポンプ配置及び主要機器真空立ち上げ時期。挿入図はアーク部ポンプポート内部。

百m分に相当する表面積を有している。そのため真 空チェンバーの圧力は容易には下がらず、ポンプの 寿命を縮めることが予想された。

3. ビームダクト部の圧力履歴

総延長1220mのアーク部の場合、約17m間隔で設 けたT字型のポンプポート72箇所の1つおきの36箇 所(図1の"IP")に、0.5~0.6m³/sの排気速度を有するス パッタイオンポンプを設置し本排気としている。粗 排気は同じポンプポートの2つおきの24箇所の別の 枝管に設けたゲートバルブ(GV)越しに着脱可能な 0.3m³/sのTMPとScrollポンプにて行う(図1の "TMP/Scroll")。圧力の測定は、粗排気用ポートと同 じ位置でIon Gaugeにより行う。アーク部はセクター GVで9区画に分割されており、一部未完成のままの トンネルへの電磁石の設置に合わせてGV区画ごと に2006年9月からフランジ接続とTMPによる粗排気 を開始し、半年後リングの大部分を接続した段階で、 TMP直上で10⁻⁷ Pa台まで下がったが、2007年の夏、 トンネルの完成に伴う再測量と電磁石の再アライン メントがあり、リング半周分の電磁石内真空ダクト は窒素パージとフランジの解放、最長1ヶ月程度の 大気曝露、再接続及び真空の再立ち上げに見舞われ た。また、直線部の出射機器の調整が遅れ、直線部 BとCの出射機器を殆ど全てダミーのダクトに置き換 えた上でようやく最終的にリング1周が全て繋がっ たのは、ビーム周回に始めて成功した2008年5月の 1ヶ月前であった。以来2009年7月までの、ビーム試 験の各マイルストーンにおけるイオンゲージ(IG)で 測定した全周圧力分布を図2に示す。

IP電源の調達が遅れたため、08年5月の最初の ビーム試験時には稼働していたIPは歯抜け状態で半 分程度であった(ポンプ間距離70m)。また、08年6月 には、ArcB2の1カ所のNW40ポートのクランプ チェーンが突如破損し微少リークが発生、Arc Bの 広範囲にわたって圧力が最大で0.1Paまで上昇し、IP はリーク箇所に近い側から順次ダウンした。発生が シャットダウン中の日曜日の午前1時だったため月 曜の朝発覚するまでの32時間リークし続け、周辺の IPの寿命を相当縮めたと思われる。

リーク箇所の修復の後、IPの電源が調達でき、6 月の中旬から09年7月までは34m間隔でIPを駆動し続 け、到達圧力はIP直上及び中間点でそれぞれ1.5及び 3×10⁻⁷Pa程度である。今夏、アーク部にある全ての 六極電磁石のコイルロ出し部の改造があるため、再 び全てのアーク部は7月に窒素パージされ六極用ダ クトは分離され、最長で1ヶ月以上窒素1気圧に曝さ れた後、ビーム試験再開の10月までに真空を回復せ ねばならなくなった。それに先立つ試験のため4月 にはArcB下流側のみを大気曝露している。

4. チェンバー部の圧力履歴

4.1 入射セプタムIIチェンバー(InjSep2)

eddy current型セプタムで厚さ0.35mmの電磁鋼板が 4000枚使用されており、総表面積は約1000m²である。 コイルの絶縁用に熔射セラミックとポリイミドフィ ルムが、また周回ビーム側のシールド用にアルミニ ウムの板が用いられている。チャンバーは2台の 0.6m³/sのIPで排気している。 当初は前後のビームダクトを繋がない状態で単独 排気を行い10⁻³Paより低くなるまで数日を要するよ うな状態で、最初のビーム試験時には10⁻⁵Pa台に下 がり、1年以上かけてまだ同じ桁に留まっている。 2008年夏のシャットダウン中に前後のダクトが繋 がったままの状態で粗排気ポートからQMSによるガ ス分析を行い、主成分はH₂Oであることを確認した。

4.2 入射キッカー、出射キッカーチェンバー

磁極のフェライト板は総面積10m²程度である。組 み立て時にフェライトのみで空気中400℃以上で焼 き、チャンバー単体でベーキングし、組み込んでか ら全体を80℃程度でベークした。リングインストー ル後の圧力は10⁴Pa台からスタートし、入射キッ カーは1年で1~2桁程度下がった。速い取り出し キッカーチェンバー5台の分布を見ると明らかなよ うに、最上流のキッカーチェンバーが単体でのガス 放出特性を反映しており十分に圧力は低く、下流に 行くに従い隣接するセプタムのアウトガスも排気し ているため圧力が高くなっている。出射キッカーは 2008年12月の加速試験の3ヶ月前にインストールと 排気を開始したので、時間的に十分排気が行われ最 上流のチェンバーは10⁻⁶Pa台まで下がってビーム試 験に臨む事ができた。

4.3 速い取り出し低・中磁場セプタムチェンバー (FXSep1,2)

1台のチェンバーに厚さ0.65mmの1346枚の積層電

磁鋼板コアが4個置かれており総表面積は190m²/m程 度である。hollow conductorコイルの絶縁に熔射セラ ミックが使用され、コイルの総延長はチェンバー1 台あたり約30mである。リングへのインストールが 最も遅れたチェンバーで、排気開始は08年12月末の ビーム加速試験のわずか4日前だったため、10⁻⁴Pa台 後半という高圧力の下での試験となり、途中でIPが ダウンしたほどである。しかし半年で1桁以上順調 に下がっており、最高圧力の冠はInjSep2へ譲った。 インストール直前のベーキング時のガス分析による と主成分はH₂Oである。

4.4 遅い取り出し電磁石チェンバー

静電セプタム、磁極が純鉄のDCセプタムともに 表面積を肥大化する構造は無い。DCセプタムの排 気開始は08年11月末だったため12月の速い取り出し ビーム試験時は圧力が高かったが、本番である09年 1月の遅い取り出し試験時には10⁻⁶Pa後半まで改善し ており、その後も順調に下がっている。

5. 考察

5.1 ビームダクト部の圧力分布

図2のArc部の圧力分布は、2008年12月以降でもIG の数がIPの2/3であるため粗いサンプリングになって しまっているが、IPの有無が交互に来るので圧力分 布も放物線分布の最大と最小を大体測定できている はずである。直線部の圧力の影響の無いアークの中

図2. J-PARC MR全周に配したIGによる加速器試験フェーズ毎の圧力分布。横軸のtickはIPの正確な位置を 表す。ラベルの(2)はIPの個数2個を表す。IGとIPの位置は必ずしも一致していない。

心付近での圧力比は約2-3程度と読み取れる。この 比は単純なモデルでは1+(SI/8c)と表され(Sは排気速 度、Iはポンプ間距離34m、cは1m分のコンダクタン ス)、現状のパイプの大きさでのこの値から、実効排 気速度は0.1m³/s程度に低下していることを示唆して いる。また、ポンプ直上における圧力の最小値は 1.5×10⁻⁷Pa程度と読み取れるが、この値を排気速度 が0.1m³/sのポンプを用いて直径130mm、長さ34mの パイプを排気して実現するには、ガス放出速度が 0.1×10⁻⁸ Pa m³/s/m²となっている必要がある。我々が 製造時に目標としたのは単体での50時間排気で 1×10⁻⁸ Pa m³/s/m²であり、10⁴時間程度排気してのさ らに一桁低い放出ガス速度は十分合理的である。

5.2 長時間排気による改善

in vacuum電磁石のIniSep2、FXSep2、遅い取り出 しセプタム、速い取り出しキッカー1及び比較とし てアーク部ビームダクト2カ所の圧力の長時間(1-2 年)の排気曲線を図3に示す。InjSep2は2008年の夏の シャットダウン中はIPの延命措置として0.3 m³/sの TMPのみで排気を行っていたので圧力曲線が大きく 2段階存在する。InjSep2及びFXSep2の細かい圧力 変動は、加速試験時以外では冷却水の水温の2℃の 変動幅に完全に同期したもので、電磁石コイルが hollow conductorであることによく対応している。加 速試験時は6sの運転周期に同調して変動する。比較 として載せたArcB3は、09年4月に1台の6極電磁石を リングから除去した時の数時間大気曝露からの真空 復帰である。同様にArcC3は、07年秋からほぼ連続 して真空状態を維持しているが途中でセクターGV を開けて上下流が繋がったり後にIPが増強される等 の変化があり明確な排気開始時間は不明となってし まったので、時間原点は増強の時期と仮定している。 いずれにせよ排気曲線は明らかに-1より寝てしまっ ており、この系の到達限界に近いと思われる。

圧力の値そのものは単純に表面積に準じている。 また排気曲線は水温の影響が大きくわかりにくいが 10⁻⁶Pa以上ではほぼ直線傾向である。InjSep2が10⁻⁶Pa 台に入るにはあと1~2年程度必要であろう。我々の 経験則では1×10⁻⁵PaのIPの寿命は5年程度であるので、 真空が良くなる頃に要交換と思われる。

6. まとめ

J-PARC MRの真空系には、ビーム加速試験の各 フェーズの直前のシャットダウン中にフェーズで要 となる機器をインストールされ、各直線部の狭い範 囲で圧力が2-3桁悪い圧力分布となっている。それ でも加速陽子に対しては十分に低い残留ガス密度で あるので、一連のビーム試験への、圧力分布の影響 は現時点のビーム強度では見られない。一方、我々 の真空系では放射線環境下のメンテナンスフリーの 観点からイオンポンプの寿命が尽きないような低い

圧力の実現を目標としており、アーク部等のビーム ダクト部はほぼ目標を達成できているが、入射セプ タムについては残念ながらあと数年でポンプを交換 せざるを得ないであろう。

参考文献

- M. Uota et al., "INSTALLATION OF VACUUM SYSTEM AT J-PARC MAIN RING AND 3-50 BEAM TRANSPORT", Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan and the 32nd Linear Accelerator Meeting in Japan (2007), pp206-208 (FO25).
- [2] ACCELERATOR TECHNICAL DESIGN REPORT FOR J-PARC, KEK Report 2002-13 (2003), p528.
- [3] Y. Hori et al., "OUTGASSING MEASUREMENTS OF J-PARC MR AND 3-50BT VACUUM DUCTS", Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan and the 32nd Linear Accelerator Meeting in Japan (2007), pp814-816 (FP55).
- [4] JHF Project Office, JHF accelerator design study report, KEK Report 97-16 (1998), Chap. 2.6.