DEVELOPMENT OF BEAM INTENSITY CONTROL SYSTEM AT HIMAC SYNCHROTRON

Shinji Sato

National Institute of Radiological Sciences 4-9-1 Anagawa, Inage-ku, Chiba, Japan, 263-8555

Abstract

At HIMAC Synchrotron, we have developed a dynamic intensity control system toward fast 3D pencil beam scanning irradiation. In this system, the beam intensity is controlled dynamically by controlling the amplitude modulation of the RF-knockout. In this paper, generation of amplitude modulation waveform for intensity control, the system for controlling amplitude modulation thorough the inclusion of feedback, and experimental result are described.

HIMACシンクロトロンにおける取り出しビーム強度変調システムの開発

1. はじめに

放射線医学総合研究所の重粒子線がん治療装置 (HIMAC)では、治療照射のさらなる高度化を目指 した次世代照射システムの開発を行っている。こ の次世代照射システムでは、呼吸性移動を伴う臓 器(肺や肝臓など)に対する3次元スキャンニング 照射の適用が、重要な開発課題となっている。従 来のスキャンニング照射法では、臓器の変動が小 さい期間に合わせて照射を行う呼吸ゲート照射を 行っても、線量分布に許容できないムラが生じて しまう。しかし、1回の呼吸ゲート内で、何度も 塗り重ねるように照射できれば、均一な照射野が 形成可能であることが示されている[1]。照射層ご との照射線量が異なるため、限られた呼吸ゲート 時間内で照射を完了させるためには、ビーム強度 を照射線量に合わせて変化させるビーム強度変調 が必須となる。このため、取り出しビーム強度を ダイナミックに変更することのできる、取り出し ビーム強度変調システムの開発を行った。

2. 取り出しビーム強度変調

HIMACシンクロトロンのビーム取り出しは、RF-Knockout(RF-KO)法[2]を用いている。RF-KO取り出 しは、ビームに対し横方向の高周波電場を印加し て、エミッタンスを増大させ、3次共鳴を利用して ビームを取り出す。このとき印加する高周波電場 の大きさを、適切に設定することで、取り出し ビーム強度を制御することができる。このシステ ムでは、高周波電場によるビーム拡散を考慮した 取り出しモデルにもとづき、要求ビーム強度に応 じた高周波電場の大きさを随時計算し、適切に設 定することで、取り出しビームスピルの全体構造 を制御[3]するフィードフォワード制御を行う。さ らに、照射線量を管理するために照射装置に設置 される、線量計の測定値によるフィードバック制 御を導入することで、要求ビーム強度に応じた精 度の良い取り出しビーム強度を得る。

3. フィードフォワード制御

フィードフォワード制御では、ビーム取り出し モデルによる計算で高周波電場の振幅変調関数を 求める。このモデルは、位相空間上の分布を正規 分布、動径方向の粒子分布をレイリー分布とし、 RF-KOによる拡散後もレイリー分布は保持され、 セパラトリクスを越えた粒子が取り出されるとす る一次元モデルである。周回当たりに取り出され る粒子数は(1)のように書ける。

$$\begin{cases} N_0 \frac{d\sigma^2(n)}{dn} \cdot \frac{r_0^2}{\sigma^4(n)} \cdot \exp\left[-\frac{r_0^2}{\sigma^2(n)}\right] = \frac{dN_{ext}}{dn} \quad (1) \\ d\sigma^2(n) = k\theta^2(n)dn \end{cases}$$

これらの関係式から、任意のビーム強度に対応 する高周波振幅関数を求めることができる。図1に いくつかのビーム強度で、平坦に取り出すための 高周波電場の振幅変調関数を示す。

本システムでは、リアルタイム制御のために、 (1)式を直接計算するのではなく、様々なビーム強 度について、事前に計算した振幅変調関数テーブ ルを参照することで、少ない演算量で結果を得ら れるように工夫した。図2に二段階の強度要求に対 する振幅変調関生成例を示す。強度要求 I_1 で点 T_1 ま でに取り出された粒子数 N_1 は N_1 = I_1 · T_1 となる。同 様に強度要求 I_2 の場合は N_2 = I_2 · T_2 となる。モデルで は、取り出された粒子数で、拡散状態が一意に決 まることから、強度要求 I_1 と I_2 で拡散状態の等しい 点は、取り出された粒子数の等しいとき、すなわ ち N_1 = N_2 である。強度要求が I_1 から I_2 に変わった時の I_2 での同一拡散状態の点 T_2 は(2)式のようになる。

$$T_{2} = \frac{I_{1}}{I_{2}} \cdot T_{1} = \frac{N_{1}}{I_{2}}$$
(2)

強度要求 I_2 での参照先は $P_{AM}(I_2, T_2)=P_{AM}(I_2, N_1/I_2)$ と すればよい。よって、強度要求 I_m 、取り出された粒 子数 N_{ext} であるときの参照先は $P_{AM}(I_m, N_{ext}/I_m)$ となる。

図2 強度変調フィードフォワード関数生成例

4. フィードバック制御

フィードフォワード制御だけでは、モデルと実際の差による最適化の限界、取り出しビームの初期条件変動のような外乱には対応できないなどにより、要求どおりのビーム強度を精度よく得ることは困難である。そこで、フィードフォワード制御を補うためのフィードバック制御を導入する。フィードバック制御は、PID制御として、実装はビーム取り出しの応答が速いことから、微分制御は行わないPI制御とした。フィードバック制御ブロック図を図3に示す。

5.システム構成

図4に取り出しビーム強度変調システムのシステ ム構成を示す。照射量を計測するため、照射装置 (Scanning Irradiation System)に設置される線量計 (Ionization Chamber)で検出したビームスピル信号と、 照射装置からの目標強度(Intensity)をビーム強度制 御装置(Beam Intensity Controller)に入力する。ビー ム強度制御装置は、目標値と検出値からフィード フォワード/フィードバック制御演算を行い、演 算結果は電圧制御増幅器(VCA)に入力され、ファン クションジェネレータ(FG)で生成された高周波信 号の振幅を制御する。この高周波信号はRFアンプ で増幅後、RFキッカー電極に印加することで、要 求強度のビームを取り出す。

図4 システム構成

6. ビーム強度制御装置

シングルチップマイクロコンピュータ(RENESAS 製 H8/3052B)を利用して製作した。ビーム強度制 御装置のブロック図を図5に示す。アナログ入出力 のレベルを合わせるスケーリングアンプ以外は、 CPUに内蔵のADC,DAC,DIO,タイマーなどの機能を 利用した、シンプルな構成となっている。製作し たビーム強度制御装置の外観を図6に示す。フィー ドフォワード/フィードバック演算処理は、マイ クロコンピュータのソフトウェアで実装したデジ タル演算制御である。プログラムは処理速度を上 げるために、アセンブリ言語を用いて作成した。 演算サイクルは100µsとしている。

図5 ビーム強度制御装置ブロック図

図6 製作したビーム強度制御装置 (a)前面、(b)内部

6. ビーム試験

 C^{6+} ,400 MeV/nビームを用いて、取り出しビーム 強度変調試験を行った。ビーム取り出し時間は1.6 秒である。図7(a)に目標強度一定とした時の結果を 示す。フラットなビームスピルが得られているこ とが分かる。

次に、ダイナミックな強度変調を行った時の試験結果を図7(b),(c)に示す。目標値は黄色のライン で、ビームスピルが緑色である。(b)は3段階の目標 値を入力した場合で、(c)は鋸波状の目標値を入力 した場合である。どちらの結果も、目標入力と測 定ビームスピルが重なっていることから、目標値 入力に応じたビームスピルが得られており、ダイ ナミックなビーム強度変調が実現できていること が確認できた。

6. まとめ

次世代照射システムの開発において必要である、 取り出しビーム強度変調システムの開発を行った。 フィードフォワード/フィードバック制御による ビーム強度制御装置を製作した。ビーム試験を行 い、良好な制御性が得られていることを確認した。 現在、このシステムを用いた世代照射システム の開発・試験が行われている。

7. 謝辞

本システムの開発にあたり、ご協力いただきま した関係者の皆様に、この場をお借りして感謝の 意を表したいと思います。

図7 ビーム試験結果、(a)目標強度一定、(b)3段階 の目標強度、(c)鋸波状の目標強度

8. 参考文献

[1] T. Furukawa et al., Med. Phys. 34(3), 1085-1097 (2007).

[2] K. Noda et al., Nucl. Instr. and Meth. A374 (1996) 269.

[3] T. Furukawa et al., Nucl. Instr. and Meth. A552 (2004) 196