INITIAL EMITTANCE MEASUREMENTS FROM THE JAEA 250kV DC GUN WITH AN NEA-GaAs CATHODE

Hokuto Iijima^{1,A)}, Ryoji Nagai^{A)}, Nobuyuki Nishimori^{A)}, Ryoichi Hajima^{A)} ^{A)} Energy Recovery Linac Development Group, Japan Atomic Energy Agency 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195

Abstract

The effective thermal energy of electrons emitted from an NEA-GaAs photocathode is an important property for photoemission electron sources. We report initial emittance measurements using the JAEA 250kV-50mA DC gun. The measurements have been performed by a single-slit-scan method with combination of a 50-µm slit and a YAG:Ce screen. The phase-space plots are analyzed by "self-consistent, unbiased elliptical exclusion method" (SCUBEEx). The effective thermal energy is evaluated by the fit of emittances as a function of the laser spot size. The minimum emittance was measured to be 0.054 mm-mrad for the laser wavelength of 633 nm and spot size of 160 µm. Consequently, the effective thermal energy of 64 meV for the wavelength of 633 nm is obtained.

JAEA 250kV電子銃におけるNEA-GaAsからの初期エミッタンス計測

1. はじめに

エネルギー回収型加速器(ERL)による次世代放射光 源は、これまでにない大電流と低エミッタンスが必要とす る。例えば、高エネルギー加速器研究機構(KEK)を中 心に進めている計画では平均電流100mAで規格化エ ミッタンス1mm-mrad、または10mAで0.1mm-mradの電子 ビームを目標としている^[1]。こうした高品質の電子ビーム を実現するには電子銃の性能によるところが大きく、目 標とする低エミッタンスを実現するためには、少なくとも電 子銃に用いられるカソードからの初期エミッタンスがこれ を下回らなければならない。

負の電子親和力(NEA)表面を持つGaAsは初期エ ミッタンスを小さくできることから、電子銃用のフォトカソー ドとして研究されてきた^[2-4]。我々、日本原子力研究開発 機構(JAEA)も、NEA-GaAsカソードの性能評価を行え る250kV-50mA DC電子銃の開発を進めてきた^[5]。よく知 られているように、フォトカソードからの規格化された初期 エミッタンス*e*nは実効的な温度*T*を用いて、

$$\varepsilon_{\rm n} = \sigma \sqrt{k_B T / m_e c^2} \tag{1}$$

で与えられる。ここでのはカソードに照射するレーザーの rmsスポットサイズである。実効的な温度Tを決める要因と しては、カソードの実際の温度、GaAsのバンドギャップと 照射するレーザー波長とのエネルギー差、伝導帯に上 げられた電子の熱化過程、カソード上での磁場の強さな どが考えられるが、ここではこうした効果をすべてTに繰り 込んでいる。NEA-GaAsフォトカソードでは駆動するレー ザーの波長をバンドギャップに合わせることで、実効的な 温度を小さくできることが期待される。

そこで本計測では、JAEAの250kV電子銃を用いて、

レーザーのスポットサイズ σ を変えながらエミッタンス ϵ_n を 測定することでカソードの実効的な熱エネルギー k_BT を 計測した。

2. 250kV電子銃とビームライン

図1: JAEA 250kV-50mA電子銃とビームラインの概念図。

図1に電子銃とビームラインの構成を示す。電子銃は 主に高電圧発生部、loading chamber、preparation chamber、カソードおよびアノード電極を収納するmain chamber部からなる。またカソード電極の下流20cmの位 置にはエミッタンス補償用のソレノイドコイルが設置され ている。このソレノイドコイルはバッキングコイルを調整す ることで、カソード上の磁場の強さを0にできる。

ビームラインは全長約5mで、主にエミッタンスを測定 するためのスリットスキャンチェンバーが2台、ビームプロ ファイルを計測するためのYAG:Ce結晶によるスクリーン が二か所に設置されている。また、ビームラインの下流に は90度偏向電磁石、終端には水冷型の大電流用ビーム

E-mail: hokuto@hiroshima-u.ac.jp

ダンプが設置されている。今回は上流側のスリットと、図 中のYAG screen 2を用いたシングルスリットスキャン法で エミッタンスを測定した。

測定に用いたスリットの幅は50µmでスキャンのステッ プ幅は50~70µmとした。スリットとスクリーンの距離は 1.37mである。スクリーンは厚さ100µmで、表面には チャージアップを防ぐためにアルミニウムを薄く蒸着して いる。スクリーンの像は512×480 pixelのCCDカメラに よって撮影した。スクリーンとCCDカメラの位置関係で決 まる像の分解能は横方向82µm/pixel、縦方向 85µm/pixelである。

カソードは市販のGaAsを使用し、NEA表面はCsとO₂ によるYo-Yo法で作成している。初期の量子効率はLD (λ=670nm)による計測で4.7%であった。測定時の電子 ビームの引出しには、He-Neレーザー(波長633nm)を用 いている。また、カソード上でのレーザープロファイルは ガウス分布に従う。

エミッタンス測定時の電流値は空間電化効果を無視 できるように、1µA程度に抑えた。電子ビームの加速エネ ルギーは150keVとし、エミッタンス補償用のソレノイド磁 場の強さはビーム軸上のもっとも強いところで110Gauss に設定した。ただし、本計測ではバッキングコイルを使わ なかったためカソード上に若干磁場が残っている。数値 計算から見積もった磁場の強さは19Gaussである。また 今回は垂直方向のエミッタンスを計測した。

3. SCUBEExによるエミッタンス解析

図2:シングルスリットスキャンで計測したレーザースポット 160µmの位相空間分布。

シングルスリットスキャンで得られた、位相空間の一例 を図2に示す。図2はレーザー径160µmの結果である。一 般に、こうした位相空間から求めるエミッタンスの値は バックグランド・ノイズの引き方に左右されやすい。ここで は、"self-consistent, unbiased elliptical exclusion method" (SCUBEEx)^[6]と呼ばれる方法でエミッタンスの値を解析 した。SCUBEExは位相空間のデータから一様にバック グランド・ノイズを引くのではなく、次式で決まる楕円形状

$$\gamma_0 x^2 + 2\alpha_0 x x' + \beta_0 x'^2 = A^2$$
 (2)

$$\beta_0 \gamma_0 - \alpha_0^2 = 1 \tag{3}$$

の領域Aを決めて、その内側でエミッタンスの値を求める。 外側はバックグランド・ノイズとして計算から除外する。以 下に図2のデータを用いてSCUBEExの具体的な手法を 説明する。

図3:閾値に対するTwiss parameter β 、 α の変化。閾値の 大きさは位相空間でのピーク値に対する割合で示してい る。

図4:領域Aに対するエミッタンス。Aが妥当な値になると エミッタンスがほぼ一定となる。

まず、マスクに使う楕円形状の α_0 、 β_0 、 κ を決めるため に、位相空間上の各点に対して閾値を設定しこの値以 下は0として位相空間全体からエミッタンスを計算する。 この閾値を徐々に大きくしていくと、ある一定値を超えた 段階でTwiss parameterの β 、 α がほぼ一定となる。図3は 図2のデータに対して閾値を変化させたときの β 、 α の変化を示している。閾値は位相空間でのピーク値に対するパーセンテージで表しており、赤線が β (縦軸は左)、青線が α (縦軸は右)の変化を表す。ここでは閾値10-30%の範囲でそれぞれの平均値をとり、(2)式のパラメータは $\beta_0=1.39$ 、 $\alpha_0=-0.43$ とした。また、 γ_0 は(3)式の関係から1.13とした。

次に決定した α_0 、 β_0 、 χ_0 を用いて位相空間からAを変 えながらエミッタンスを計算する。図4はAに対するエミッ タンスの変化を示している。エミッタンスは最初Aと共に 増大するが、あるAの範囲でほぼ一定値をとり、その後発 散していく。この一定値が図2の位相空間に対する真の エミッタンスの値と考える。ここでは0.8から1.8の区間の平 均値をとって ε_n =0.054mm-mradと求めた。

4. 測定結果と議論

図5:レーザースポットサイズに対するエミッタンスの変化。 波線は(1)式を用いてフィッティングをした結果を示す。

各レーザー径に対する、エミッタンスの値を図5に示す。 それぞれエミッタンスの値は先に述べたSCUBEExによっ て算出している。図中の青波線は測定した値を(1)式に よってフィッティングした結果を示しており、カソードの実 効的な温度 $k_{\rm B}T$ は64±3meVであった。この値は室温 (T=300 [K])を仮定したときのエネルギー26meVよりも大 きいが、バンドギャップの大きさ ϕ とレーザー波長hvの差 によるエネルギー($hv - \phi$)/3=180meVよりは低く、レー ザーにより伝導帯に上げられた電子が放出されるまでに 熱化されたことがうかがえる。

次世代放射光源の実機では、電子ビームの空間電荷 効果を抑えるため、レーザーの波形整形により、円筒型 一様分布の電子ビームを発生させることを考えている^[1]。 円筒形の場合、エミッタンスと円筒の半径rは

$$\varepsilon_n = r/2\sqrt{k_B T/m_e c^2} \tag{4}$$

の関係を持つ。平均電流100mAの場合、半径rは1 mm 程度で、(4)式から $k_{\rm B}T$ =64meVのときのエミッタンスは 0.18mm-mradであり、目標値の1mm-mradを十分に下回 る。また、0.1mm-mradにするためには半径0.57mm以下 となるが、要求される電流値が低いことから実現可能と 考える。

今回の測定と同様な実験をCEBAFとCornell大学が行っており、波長633 nmに対する k_BT の値はそれぞれ、 44±3meV^[2]、および81±6meV^[4]と報告している。我々の測定値は両者の中間に位置し、それぞれ異なった値ではあるが、これはカソードの実温度、カソード上での磁場の強さ等の違いからくるものと考える。例えば得られたエミッタンスのデータを磁場の効果^[7]を含めた次式、

$$\varepsilon_{\rm n} = \sqrt{k_B T / m_e c^2 \cdot \sigma^2 + e |B_z| / 2m_e c \cdot \sigma^4} \quad (5)$$

でフィッティングを行うと、 $k_{\rm B}T$ =54±5meVという結果をえる。またこのとき、 B_z =8.4±1.7Gaussで、2章で述べた値19Gaussと多少異なるが、バッキングコイルを調整し、カソード上での磁場の強さを0にすることで、 $k_{\rm B}T$ を小さくすることができる。

次世代放射光源の実機ではGaAsのバンドギャップに 近い波長のレーザーを用いる。このため633nmの波長の 時よりもさらに小さい $k_{\rm B}T$ が実現可能で、CEBAFでは840 nmの波長に対して34 meV^[2]、Cornell大学は860 nmに 対して30 meV^[4]を計測している。

5. まとめ

JAEAの250kV-50mA DC電子銃を用いて、波長 633nmに対するNEA-GaAsからの初期エミッタンスおよび 実効的な熱エネルギー $k_{\rm B}T$ を測定した。測定された最も 低いエミッタンスは、レーザーのrmsスポットサイズ160 μ m に対して0.054mm-mradであった。また、 $k_{\rm B}T$ は64meVで あった。この結果から、次世代放射光源の実機ではより バンドギャップエネルギーに近い波長のレーザーを使用 し、またレーザーの波形整形により発生する電子ビーム を円筒形にすることで、目標の1mm-mradのエミッタンス が可能であることを確認した。

参考文献

- [1] "コンパクトERLの設計研究", KEK/Report 2007-7, JAEA/Research 2008-032, February 2008 A
- [2] B. M. Dunham, L. C. Cardman, and C. K. Simclair, Proc. of PAC '95, 1995, p.1030
- [3] N. Yamamoto, et al., J. Appl. Phys., 102, 024904 (2007).
- [4] I. V. Bazarov, et al., J. Appl. Phys., 103, 054901 (2008).
- [5] H. Iijima, et al., Proc. of the 4th Annual Meeting of Particle Accelerator Society of Japan, p.670 (2007).
- [6] M. P. Stockli, R. F. Welton, and R. Keller, Rev. Sci. Instrum., 75, p.1646 (2004).
- [7] D. T. Palmer, et al., Proc of PAC'97, 1997, p.2843.