Design of a 500kV electron gun for ERL light source at KEK

Masahiro Yamamoto^{1,A)}, Yosuke Honda^{A)}, Tsukasa Miyajima^{A)}, Takashi Uchiyama^{A)}, Masanori Kobayashi^{A)}, Shunya Mutoh^{A)}, Shunya Matsuba^{A,E)}, Shogo Sakanaka^{A)}, Kentaro Satoh^{A)}, Yoshio Saitoh^{A)}, Tohru Honda^{A)}, Yukinori Kobayashi^{A)}, Hiroshi Kawata^{A)}, Nobuyuki Nishimori^{B)}, Ryoji Nagai^{B)}, Hokuto Iijima^{B)},

Ryoichi Hajima^{B)}, Makoto Kuwahara^{C)}, Shoji Okumi^{C)}, Tsutomu Nakanishi^{C)}, Xiuguang Jin^{D)}, Yuya Maeda^{D)}, Tohru Ujihara^{D)}, Yoshikazu Takeda^{D)}, Masao Kuriki^{E)}, Chie Shonaka^{E)}, Daisuke Kubo^{E)}, and Hiroki Kurisu^{F)}

^{A)}KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801

^{B)} JAEA, 2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1195

^{C)} Department of Physics, Nagoya Univ., Nagoya, Aichi 464-8602

^{D)} Faculty of Engineering, Nagoya Univ., Nagoya, Aichi 464-8603

^{E)} Grad. Advanced Sciences of Matter, Hiroshima Univ., Higashi-hiroshima, Hiroshima 739-8530

^{F)} Department of Advance Science and Engineering, Yamaguchi Univ., Ube Yamaguchi 755-8611

Abstract

A newly 500kV electron gun (2nd-500kV gun) for an ERL light source is designed at KEK. A new concept and stateof-the-art technologies of vacuum system, ceramic insulators, high voltage power supply, photocathode and preparation system will be employed. The details are described in this report.

KEKにおけるERL放射光源用500kV電子銃の開発計画

1.はじめに

次世代放射光源計画としてエネルギー回収型リニ アック(ERL)の研究開発が進められており、その実 証機となるコンパクトERL(cERL)の建設準備が 現在KEK東カウンターホールで進められている^[1]。 電子銃には熱エミッタンス0.1 π.mm.mrad以下の超低 エミッタンス電子ビーム(1.3 GHz,CW)の生成が 要求されるため、これを実現すべく加速電圧500 kV 以上の半導体光陰極を用いた直流型電子源の開発を JAEA,広島大学,名古屋大学と共同で進めている。 JAEAではすでに500 kV電子銃1号機が立上げ中の状 況の中、開発要素の多い電子銃について実機のほか R&D機も必要であるとの観点から、今年度より KEKにおいて500 kV電子銃2号機の開発に着手した。

2. 設計方針

500 kV電子銃2号機の設計は、フォトカソード準備装置との接合、電子銃および絶縁セラミック管の 組立てや支持方法の簡便さの観点から、Cornell大電 子銃型の設計^[2]を元に進めた。設計にあたり特に以 下の点を考慮した。

・実用に耐えうるフォトカソード寿命を得るための 極高真空(10⁻¹⁰ Pa以下)の生成

- ・電界放出暗電流を10 nA以下に抑える設計
- ・メンテナンス性、拡張性の確保

・より実用的なフォトカソード準備系の構築 設計した本電子銃の概要図を図1に示す。

¹ E-mail: masahiro@post.kek.jp

3.電子銃部の設計

3.1 真空chamber材料

真空chamberの到達圧力p[Pa]は素材表面からの単 位面積・単位時間当たりのガス放出量q[Pa・m/s](以 下、ガス放出速度と言う)、真空内壁表面積A[m²]、 ポンプの排気速度S[m³/s]を用いて $p = q \times A/S$ で与え られる。つまり良い真空を得るためにはq,Aは小さ く、Sは大きくとれば良いのだが、500 kVに浮いた 電極およびサポート管からの放電を抑えるため、電 子銃chamberには適度な大きさ(表面積で約5 m²)

図1:500 kV電子銃2号機の概要図

が要求される。また、一般にポンプの排気速度は圧 力によって変化し、極高真空領域では、多くのポン プは排気速度が極端に低下する。コスト、サイズの 点で現実的な排気系の設置を考慮した場合、極高真 空下における実効排気速度を約2.5 m³/sと仮定する と、1×10⁻¹⁰ Pa以下の真空を得るために許容できる chamber内壁(表面積で5m²と仮定)からのガス放出 速度は5×10⁻¹¹ Pa・m/s以下が要請される。このガス 放出速度は電解研磨されたステンレス鋼を200 程 度で数十時間ベーキングしたような一般的な方法で は容易に得られない値である。一方、適切な化学研 磨がなされ、150 で20時間ベークされたJIS 2 種純 チタンのガス放出速度は、10⁻¹² Pa·m/s以下に抑えら れ^[3]、またステンレス鋼と同等以上の硬さをもつ純 チタン系の材料も開発されている(ICF接続可能)こ とから^[4]、本電子銃chamberの素材としてチタン材 を採用することを予定している。

3.2 排気系

本電子銃の主排気系の一つは非蒸発型ゲッター (NEG)ポンプである。NEGは特に残留ガスの主成分 となる水素に対して高い排気速度を持ち、その排気 作用の限界はSievert's則より与えられる非常に低い (<10⁻¹² Pa)水素の平衡圧力で決まると推測されるた め極高真空の排気ポンプとして適していると考える。 一方でNEGは希ガスやメタンなどは排気できないた め、これらを排気できる別のポンプの併用が必須で ある。従来はイオンポンプによりこれらを排気して いたが、イオンポンプはその動作原理から極高真空 下では排気速度が極端に低下してしまう。そのため 今回は、原理的に極高真空下においても適度な排気 速度が期待できる極高真空仕様のクライオポンプを 使用する。市販されている一般のクライオポンプは、 真空シール材や冷凍機の配置の関係上、100 以上 のベーキングができないが、これらを改良したもの を用いる。

これらのポンプは実際には下記のように電子銃 chamberに取付け、排気を行うことを想定している。 NEGについては、ヒーター内蔵型の小型のNEGカー トリッジを多数 (最大64本、水素排気速度約25 m³/s) スタックし、電子銃底部のICF406フランジに設置、 電子銃chamberをベーキング(150 ~200)しなが ら側面部のICF256フランジにゲートバルブを介して 接続された水素排気速度0.8 m³/sの磁気浮上ターボ 分子ポンプにて排気する。その後NEG活性化が可能 となる適当な圧力(10⁻⁵ Paを想定)で、通電加熱によ リNEGカートリッジの活性化を行う。この時NEGよ り大量の水素が放出されるが、排気速度0.8 m³/sの 条件の下、ゲッター材1 kg(排気速度10 m³/s相当)に 対して450 で活性化を行った場合、およそ20時間 程度の排気時間で初期のNEG内部の水素濃度に対し て1/50程度まで減少させることができる。NEG内部

図2:(左)電極近傍の等ポテンシャル線および電界 強度(単位はMV/m)、(右)カソード電極部の断面図.

の水素濃度が十分低くなった時点でNEGの活性化を 止め、側面部ICF305フランジに設置されたベーカブ ルタイプのクライオポンプを動作させ、ターボ分子 ポンプロのゲートバルブを閉じて、クライオ・NEG ポンプ両者で極高真空まで排気する。

極高真空下で仮に排気速度がカタログ値の数分の 1~1/10程度となったとしても、chamber壁からの ガス放出速度が十分抑えられれば10⁻¹⁰ Pa以下の真空 が得られると考えている。

3.3 電極

電界放出暗電流を抑えるためにはカソード電極上 での電界強度を経験的におよそ10MV/m以下に抑え る必要がある。フォトカソード径 15mm、カソー ド・アノード距離72mm、アノード開口径 30mmの 条件の下、カソード電極表面部の曲率半径を62mm として電界計算を行った結果を図2に示す。

3.4 セラミック管

500kV絶縁のセラミック管で問題は放電による リークの発生である。問題の原因として推測されて いることは、 セラミック管中央部に配置された電 極サポート管から発生した電界放出電子がセラミッ ク表面を衝撃。 セラミック表面からの二次電子の 発生、チャージアップにより電界が集中し放電が発 それが繰り返されることによりセラミックに 生。 クラックが入りリークを起こす、といった過程であ る。この対策として我々は多段分割式セラミック管 を採用し^[5,6]、各分割部には電界放出電子からのセ ラミックの保護、電界放出電子および二次電子の回 収、ロウ付け部近傍の電界緩和を目的にガード電極 を設置している。今回はそれに加え、適当な遷移元 素が添加された沿面に対する絶縁耐力が高い新しい セラミック素材、および従来型のアルミナセラミッ クとして、ろう付け部に発生する残留応力や欠陥な どをできるだけ抑えるために緻密で粒径が細かく (平均粒径5µ以下)かつ粒の揃ったアルミナを原料 とした精密研磨が可能なセラミック素材の利用を検 討している。

電子銃2号機にはセラミックを5段積重ねたものの 両側にフランジを接合したセラミック管を2組合せ て使用する。10段積重ね1組の構造と比べ、中間の フランジ部が増える分初期コストは幾分高くるが、 放電によるリークなどの問題が発生した場合、2組 に分割した場合は、問題のある部分を交換する事で 復旧が可能でコストも約半分で済む。

セラミック管は電子銃上部のフランジに設置され るが、chamber内部へのアクセスおよび将来の拡張 性を考慮し、電子銃側には 720mm径の大口径フラ ンジを設けている。

3.5 高圧電源

電極間で発生する電界放出暗電流を抑えるため、 200kV電子銃の経験から運転電圧より2割程度高い 出力電圧でのコンディショニングが必要となると予 想されるため、出力電圧600kV以上の電源が必要と なる。cERLでの実運転を想定し、最低でも20mAの 出力が長期間安定に得られること、リップルは10⁻³ 以下、放電時に電極等を傷めないために放電時に開 放されるエネルギーを30J以下に抑える事が要求さ れる。使用する電源は、これまで多くの実績のある コッククロフト・ウォルトン回路(数MV, >100mA) のほか、Cornell大学の電子銃の高圧電源 (750kV,100mA)として実績があり、高効率でコンパ クトなinsulating core transformer technology (CTT)を 用いた電源の利用も検討している^[7]。

3.6 フォトカソード

ERLでは供給する電子ビームの平均電流が10mA 以上となるため、カソードの量子効率が1%の場合 では最低でも2.3W以上(波長530nm)のレーザー光を 1mm以下に絞って照射することとなる。ビーム生 成に利用されず、基板で吸収されたレーザー光は熱 となるため、高出力のレーザー光が入射した場合、 その熱によりNEA表面が失われる問題が発生すると 推測される^[8]。カソードは500kVに浮いた電極上に 固定されるため冷却は容易ではない状況で、この熱 の問題を緩和する方策として、量子効率の高いフォ トカソードを用いて照射するレーザーパワーを抑え る事が最も重要である。また結晶基板にレーザー光 が透過する材料を用いたフォトカソードも有効であ ると考えられる。透過型基板のフォトカソードとし ては名古屋大学工学研究科竹田研究室にて開発され た基板にGaPを採用したものが励起光800nm帯で既 に実用化されている^[9]。本電子銃には透過基板を使 用した際、フォトカソードを通過したレーザー光を chamberの外部へ取出すためのポートが設置されて いる。

4.活性化装置部の設計

上記のとおり、フォトカソード寿命を延ばすため の様々な対策を施すが、これによりフォトカソード 寿命の問題が完全に解決できるとは考えにくく、最

図3:フォトカソード活性化システム概要図

初はごく限られた寿命(10時間程度)の状況での電子 銃の運転になると予想される。

この欠点を補うため、ERL電子源にはフレッシュ なフォトカソードをいつでも交換できる準備システ ムが必須であると考える。NEA表面の作成には、 500度程度での加熱洗浄、 室温程度までの冷却、

Csと酸素の供給によるNEA表面の形成の3工程が 必要であり、これらの工程に5時間程度の時間を要 する。このタイプの電子源ではロードロック方式で フォトカソード交換する方法は今や標準仕様といえ るが、現在実用化されているシステムでは活性化で きるフォトカソードは1度に1つである。そこで、一 度に複数のフォトカソードの活性化が行え、ストッ クできる準備システムとして多重Puck移送システム を検討している(図3)。これはPuckを1つのリボ ルバー型ホルダーに複数セットし、リボルバーごと 移送・活性化操作・ストックする方法である。活性 化条件を揃える難しさが予想されるが、電子銃の早 期実用化には不可欠な機能と考える。

5.まとめ

ERL用電子銃の実用機開発を目標に 10⁻¹⁰Paの極高真空を実現できる真空系、 500kVを安定印加できるセラミック管、高圧電源、 透過基板フォトカ ソードに対応した設計、 多重Puck移送・活性化シ ステムの設計および検討を進めた。電子銃部につい てはほぼ設計は決定し、来年度より電子銃の立上げ を行う予定である。

参考文献

- [1] 羽島良一 他、コンパクトERLの設計研究, KEK Report 2007-7, JAEA-Research 2008-032
- [2] B.M. Dunham et al., PAC07 proceedings p.1224-1226
- [3] 栗巣普揮 他、真空 49 (2006) 254
- [4] 栗巣普揮 他、真空 50 (2007) 41
- [5] N. Nishimori et al., PESP2008 proceedings
- [6] T. Nakanishi et al., Proc. of 12th International symposium on high energy spin physics (1996) 712-716.
- [7] U. Uhmeyer, PESP2008 Proceedings
- [8] C. Shonaka et al., PAC09 proceedings
- [9] X. Jin et al., Appl. Phys. Express 1 (2008) 045002